PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m172.
Published online 2007 December 12. doi:  10.1107/S1600536807065841
PMCID: PMC2915107

(Croconato-κ2 O,O′)bis­(1,10-phenanthroline-κ2 N,N′)manganese(II)

Abstract

The title complex, [Mn(C5O5)(C12H8N2)2], lies across a crystallographic twofold axis which passes through the Mn atom and bisects the croconate ligand. The two 1,10-phenanthroline (phen) ligands are arranged in a propeller manner and the local mol­ecular geometry of the MnN4O2 unit is severely distorted octa­hedral. This may be inter­preted as a structural perturbation of the MnN4 square by the croconate ligand. In the crystal structure, the dipole moments of the mol­ecules are arranged alternately along the +b and −b directions. All the phen ligands are involved in π stacking inter­actions, alternately along the [110] and [An external file that holds a picture, illustration, etc.
Object name is e-64-0m172-efi2.jpg10] directions. The alternate spacings between the neighbouring phen planes in the one-dimensional π stacks are 3.361 (2) and 3.526 (2) Å.

Related literature

For related literature, see: Chen et al. (2005 [triangle], 2007 [triangle]); Coronado et al. (2007 [triangle]); Maji et al. (2003 [triangle]); Sletten et al. (1998 [triangle]); Wang et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m172-scheme1.jpg

Experimental

Crystal data

  • [Mn(C5O5)(C12H8N2)2]
  • M r = 555.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m172-efi3.jpg
  • a = 14.9185 (6) Å
  • b = 10.3749 (4) Å
  • c = 16.0859 (6) Å
  • β = 109.885 (1)°
  • V = 2341.30 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.62 mm−1
  • T = 120 (2) K
  • 0.44 × 0.33 × 0.22 mm

Data collection

  • Siemens SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.617, T max = 0.746 (expected range = 0.722–0.873)
  • 16256 measured reflections
  • 3356 independent reflections
  • 3214 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.081
  • S = 1.06
  • 3356 reflections
  • 210 parameters
  • All H-atom parameters refined
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1999 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 1997 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065841/fj2088sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065841/fj2088Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant Nos. 50673054 and 20472044).

supplementary crystallographic information

Comment

The croconate C5O52- anion has attracted increasing attention in recent years because this polydentate ligand gave rise to a variety of interesting complexes (Coronado et al., 2007; Chen et al., 2005; Maji et al., 2003; Wang et al., 2002; Sletten et al., 1998). Typically, the C5O52- anion can serve as a terminal bidentate ligand and a bridging ligand utilizing more than two O atoms for coordination. By comparison, the coordination chemistry of the neutral 1,10-phenanthroline bidentate ligand has been well studied.

Recently, we reported three mixed-ligand complexes [M(phen)2(C5O5)] (M=Co, Ni, Cu) (Chen et al., 2007), which have both croconate and 1,10-phenanthroline ligands. In this study, we report a new member of this family: [Mn(phen)2(C5O5)] which is isostructural to [Cu(phen)2(C5O5)].

[Mn(phen)2(C5O5)] shows following common features with other three known [M(phen)2(C5O5)] complexes: the molecule lies across twofold axis which is along the direction of the molecular dipole moment. Around the molecular axis, two phen ligands are arranged in a chiral propeller manner. The C—O bond lengths involving coordinated O atoms are longer than those of other C—O bonds.

The mean M—N bond lengths in [M(phen)2(C5O5)] series are 2.2515 (9), 2.124 (2), 2.080 (3), and 2.065 (2) Å for the Mn, Co, Ni, and Cu complexes respectively, showing monotonous shortening with increasing the atomic number. The M—O lengths in [M(phen)2(C5O5)] are 2.2163 (8), 2.120 (2), 2.098 (3), and 2.303 (2) Å for the Mn, Co, Ni, and Cu complexes respectively, showing a similar shortening tendency except for Cu complex which has the longest M—O length.

The molecular conformation of [Mn(phen)2(C5O5)] is close to [Cu(phen)2(C5O5)] while different from [Co(phen)2(C5O5)] and [Ni(phen)2(C5O5)]. The dihedral angles between the two phen planes for the Mn, Co, Ni, and Cu complexes are 46.5 (1), 85.7 (1), 86.0 (1), and 40.7 (1)°, respectively. In fact, the local polyhedral CoN4O2 and NiN4O2 in [M(phen)2(C5O5)] is close to the octahedral while MnN4O2 and CuN4O2 in their complexes is severely distorted from the octahedral. We can suppose that the Mn(II)(Cu(II)) ion intially combines two phen ligands forming a MnN4 (CuN4) square, and then this square is distorted by adding the croconato ligand. This supposition may be supported by the relatively longest Mn—O and Cu—O bond length mentioned above in these complexes.

As shown in Fig.2, the dipole moments of [Mn(phen)2(C5O5)] molecules are arranged alternatively along +b and-b directions. All phen ligands are parallel packed with the π-stacks being alternatively along the [110] and [-110] directions. The spacings between the neighboring phen planes in this kind of 1-D π-stacks are 3.361 (2) and 3.526 (2) Å (alternatively spaced).

Both in the molecular view and in the crystal view, four [M(phen)2(C5O5)] members can be classified into two groups: the octahedral and Pbcn symmetric isostructural pair of [Co(phen)2(C5O5)] and [Ni(phen)2(C5O5)]; the non-octahedral and C2/c symmetric isostructural pair of [Mn(phen)2(C5O5)] and [Cu(phen)2(C5O5)]. The similarity between Mn and Cu complexes here may be related to the fact that the d-shell is half-filled for Mn(II) and almost full-filled for Cu(II) ions.

Experimental

[K2(C5O5)] (0.10 g) and MnCl2.4H2O (0.09 g) were dissolved in mixed solvent of water (15 ml) and dimethylformamide (10 ml). Then 1,10-phenanthroline (0.15 g) was added. The mixture was heated to 340–350 K under continuous stirring for 20 min and then filtered. The green prisms crystals were obtained by slow evaporation at 313 K.

Refinement

All the H atoms were located in a difference Fourier map and refined in the isotropic approximation.

Figures

Fig. 1.
The molecular structure of [Mn(phen)2(C5O5)]. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted. [symmetry code: (i) -x, y, -z + 1/2.]
Fig. 2.
A packing plot of [Mn(phen)2(C5O5)].

Crystal data

[Mn(C5O5)(C12H8N2)2]F000 = 1132
Mr = 555.40Dx = 1.576 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6761 reflections
a = 14.9185 (6) Åθ = 2.4–30.0º
b = 10.3749 (4) ŵ = 0.62 mm1
c = 16.0859 (6) ÅT = 120 (2) K
β = 109.885 (1)ºParallelepiped, green
V = 2341.30 (16) Å30.44 × 0.33 × 0.22 mm
Z = 4

Data collection

Siemens SMART 1K CCD area-detector diffractometer3356 independent reflections
Radiation source: fine-focus sealed tube3214 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
Detector resolution: 8 pixels mm-1θmax = 30.0º
T = 120(2) Kθmin = 2.4º
[var phi] and ω scansh = −20→20
Absorption correction: multi-scan(SADABS; Bruker, 2006)k = −14→14
Tmin = 0.617, Tmax = 0.746l = −22→22
16256 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.081  w = 1/[σ2(Fo2) + (0.0494P)2 + 1.5339P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3356 reflectionsΔρmax = 0.50 e Å3
210 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.50000.26400 (2)0.25000.01622 (7)
O10.59885 (5)0.43062 (7)0.28042 (5)0.02103 (16)
O20.67021 (6)0.70377 (9)0.30364 (6)0.02748 (18)
O30.50000.87022 (11)0.25000.0219 (2)
N10.62594 (6)0.15684 (8)0.34684 (6)0.01795 (16)
N20.46304 (6)0.23245 (8)0.37113 (6)0.01674 (17)
C10.70739 (7)0.12417 (11)0.33554 (7)0.0215 (2)
H10.7115 (10)0.1353 (15)0.2787 (10)0.025 (4)*
C20.78638 (8)0.07591 (11)0.40428 (8)0.0236 (2)
H20.8456 (12)0.0555 (17)0.3931 (11)0.035 (4)*
C30.78032 (7)0.05937 (10)0.48675 (8)0.0216 (2)
H30.8314 (10)0.0290 (15)0.5356 (10)0.023 (3)*
C100.69459 (7)0.09129 (10)0.50113 (7)0.01780 (18)
C90.61971 (7)0.14089 (9)0.42867 (6)0.01610 (18)
C110.53204 (6)0.17845 (9)0.44123 (6)0.01574 (18)
C120.52078 (7)0.15896 (10)0.52374 (6)0.01709 (18)
C50.59808 (7)0.10556 (10)0.59570 (7)0.01991 (19)
H50.5877 (11)0.0922 (15)0.6492 (11)0.030 (4)*
C40.68188 (7)0.07441 (10)0.58486 (7)0.02041 (19)
H40.7324 (11)0.0420 (15)0.6319 (10)0.023 (3)*
C60.43206 (7)0.19283 (10)0.53119 (7)0.01892 (19)
H60.4204 (11)0.1750 (15)0.5844 (11)0.027 (4)*
C70.36277 (8)0.24697 (10)0.45998 (7)0.0194 (2)
H70.3036 (12)0.2722 (14)0.4624 (11)0.025 (4)*
C80.38134 (7)0.26697 (10)0.38121 (7)0.01831 (19)
H80.3372 (10)0.3074 (14)0.3314 (10)0.020 (3)*
C130.55136 (6)0.53447 (10)0.26577 (6)0.01663 (18)
C140.58663 (7)0.66724 (10)0.27693 (6)0.01791 (18)
C150.50000.75179 (14)0.25000.0172 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.01278 (11)0.02053 (12)0.01434 (11)0.0000.00330 (8)0.000
O10.0128 (3)0.0224 (4)0.0243 (4)0.0014 (3)0.0017 (3)−0.0019 (3)
O20.0147 (3)0.0294 (4)0.0350 (4)−0.0044 (3)0.0041 (3)−0.0040 (3)
O30.0248 (5)0.0215 (5)0.0198 (5)0.0000.0083 (4)0.000
N10.0156 (4)0.0193 (4)0.0190 (4)0.0014 (3)0.0061 (3)0.0006 (3)
N20.0132 (4)0.0201 (4)0.0156 (4)0.0011 (3)0.0031 (3)0.0006 (3)
C10.0192 (5)0.0234 (5)0.0236 (5)0.0032 (4)0.0094 (4)0.0018 (4)
C20.0167 (4)0.0249 (5)0.0301 (5)0.0047 (4)0.0090 (4)0.0017 (4)
C30.0147 (4)0.0218 (5)0.0256 (5)0.0033 (3)0.0034 (4)0.0011 (4)
C100.0144 (4)0.0173 (4)0.0193 (4)0.0003 (3)0.0025 (3)−0.0004 (3)
C90.0136 (4)0.0160 (4)0.0175 (4)−0.0001 (3)0.0037 (3)−0.0007 (3)
C110.0130 (4)0.0167 (4)0.0160 (4)−0.0004 (3)0.0030 (3)−0.0010 (3)
C120.0155 (4)0.0186 (4)0.0155 (4)−0.0010 (3)0.0032 (3)−0.0021 (3)
C50.0198 (4)0.0228 (5)0.0147 (4)0.0001 (4)0.0027 (3)−0.0005 (3)
C40.0174 (4)0.0219 (5)0.0176 (4)0.0012 (3)0.0003 (3)0.0003 (3)
C60.0179 (4)0.0228 (5)0.0161 (4)−0.0019 (4)0.0060 (3)−0.0030 (4)
C70.0150 (4)0.0239 (5)0.0196 (5)0.0005 (3)0.0064 (4)−0.0022 (3)
C80.0138 (4)0.0220 (5)0.0181 (5)0.0012 (3)0.0040 (3)0.0002 (3)
C130.0119 (4)0.0230 (4)0.0134 (4)−0.0001 (3)0.0023 (3)−0.0011 (3)
C140.0139 (4)0.0232 (5)0.0157 (4)−0.0009 (3)0.0040 (3)−0.0018 (3)
C150.0150 (6)0.0234 (6)0.0130 (6)0.0000.0046 (5)0.000

Geometric parameters (Å, °)

Mn1—O12.2163 (8)C10—C91.4091 (13)
Mn1—O1i2.2163 (8)C10—C41.4333 (15)
Mn1—N22.2222 (9)C9—C111.4433 (13)
Mn1—N2i2.2222 (9)C11—C121.4080 (13)
Mn1—N1i2.2807 (9)C12—C61.4134 (13)
Mn1—N12.2807 (9)C12—C51.4383 (13)
O1—C131.2668 (12)C5—C41.3587 (15)
O2—C141.2323 (12)C5—H50.934 (17)
O3—C151.2287 (18)C4—H40.931 (15)
N1—C11.3322 (13)C6—C71.3750 (15)
N1—C91.3607 (13)C6—H60.947 (16)
N2—C81.3321 (13)C7—C81.4015 (15)
N2—C111.3621 (12)C7—H70.934 (17)
C1—C21.4055 (15)C8—H80.945 (14)
C1—H10.944 (16)C13—C13i1.4412 (18)
C2—C31.3709 (16)C13—C141.4637 (14)
C2—H20.982 (17)C14—C151.4989 (13)
C3—C101.4143 (14)C15—C14i1.4989 (13)
C3—H30.943 (15)
O1—Mn1—O1i77.48 (4)N1—C9—C10123.29 (9)
O1—Mn1—N2105.44 (3)N1—C9—C11117.77 (8)
O1i—Mn1—N287.91 (3)C10—C9—C11118.94 (9)
O1—Mn1—N2i87.91 (3)N2—C11—C12122.72 (9)
O1i—Mn1—N2i105.44 (3)N2—C11—C9117.44 (9)
N2—Mn1—N2i163.06 (5)C12—C11—C9119.84 (8)
O1—Mn1—N1i149.62 (3)C11—C12—C6117.37 (9)
O1i—Mn1—N1i84.13 (3)C11—C12—C5119.60 (9)
N2—Mn1—N1i97.74 (3)C6—C12—C5123.03 (9)
N2i—Mn1—N1i73.85 (3)C4—C5—C12120.61 (9)
O1—Mn1—N184.13 (3)C4—C5—H5122.0 (10)
O1i—Mn1—N1149.62 (3)C12—C5—H5117.3 (10)
N2—Mn1—N173.85 (3)C5—C4—C10120.87 (9)
N2i—Mn1—N197.74 (3)C5—C4—H4120.5 (9)
N1i—Mn1—N1121.66 (5)C10—C4—H4118.6 (9)
C13—O1—Mn1109.53 (6)C7—C6—C12119.42 (9)
C1—N1—C9117.82 (9)C7—C6—H6121.0 (9)
C1—N1—Mn1127.48 (7)C12—C6—H6119.5 (9)
C9—N1—Mn1114.11 (6)C6—C7—C8119.34 (10)
C8—N2—C11118.35 (9)C6—C7—H7122.2 (10)
C8—N2—Mn1125.26 (7)C8—C7—H7118.5 (10)
C11—N2—Mn1116.32 (7)N2—C8—C7122.73 (10)
N1—C1—C2122.87 (10)N2—C8—H8114.7 (9)
N1—C1—H1117.6 (9)C7—C8—H8122.5 (9)
C2—C1—H1119.5 (9)O1—C13—C13i121.73 (5)
C3—C2—C1119.50 (10)O1—C13—C14128.51 (8)
C3—C2—H2120.6 (10)C13i—C13—C14109.76 (5)
C1—C2—H2119.9 (10)O2—C14—C13127.67 (10)
C2—C3—C10119.33 (9)O2—C14—C15126.27 (10)
C2—C3—H3123.1 (9)C13—C14—C15106.06 (8)
C10—C3—H3117.5 (9)O3—C15—C14i125.82 (6)
C9—C10—C3117.18 (9)O3—C15—C14125.82 (6)
C9—C10—C4120.06 (9)C14i—C15—C14108.36 (12)
C3—C10—C4122.76 (9)

Symmetry codes: (i) −x+1, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2088).

References

  • Bruker (1997). SMART (Version 5.054) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (1999). SAINT Version 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). SADABS Version 2006/1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chen, X., Chen, H.-F., Xue, G., Chen, H.-Y., Yu, W.-T. & Fang, Q. (2007). Acta Cryst. C63, m166–m168. [PubMed]
  • Chen, H.-Y., Fang, Q., Xue, G. & Yu, W.-T. (2005). Acta Cryst. C61, m535–m537. [PubMed]
  • Coronado, E., Curreli, S., Giménez-Saiz, C., Gómez-García, C.-J., Deplano, P., Mercuri, M.-L., Serpe, A., Pilia, L., Faulmann, C. & Canadell, E. (2007). Inorg. Chem.46, 4446–4457. [PubMed]
  • Maji, T. K., Konar, S., Mostafa, G., Zangrando, E., Lu, T.-H. & Chaudhuri, N. R. (2003). Dalton Trans. pp. 171–175.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sletten, J., Daraghmeh, H., Lloret, F. & Julve, M. (1998). Inorg. Chim. Acta, 279, 127–135.
  • Wang, C. C., Yang, C.-H. & Lee, G.-H. (2002). Inorg. Chem.41, 1015–1018. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography