PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m170–m171.
Published online 2007 December 12. doi:  10.1107/S1600536807065361
PMCID: PMC2915106

This article has been retractedRetraction in: Acta Crystallogr Sect E Struct Rep Online. 2012 July 01; 68(Pt 7): e14    See also: PMC Retraction Policy

Oxalatobis(propane-1,3-diamine)manganese(II) chloride monohydrate

Abstract

In the asymmetric unit of the title compound, [Mn(C2O4)(C3H10N2)2]Cl·H2O, there are two independent MnIII complexes, two Cl anions and two uncoordinated water mol­ecules. Each MnIII atom is hexa­coordinated by four N atoms from two propane-1,3-diamine ligands and two O atoms from one oxalate ligand, resulting in a slightly distorted octa­hedral MnO2N4 geometry. Mn—O and Mn—N bond lengths are in the ranges 1.969 (2)–2.020 (3) and 2.068 (3)–2.113 (4) Å, respectively. There are weak inter­molecular O—H(...)O, O—H(...)Cl, N—H(...)O and N—H(...)Cl hydrogen bonds with D(...)A distances in the range 2.831 (4)–3.423 (3) Å.

Related literature

For related literature, see: Chung et al. (1971 [triangle]); Church & Halvorson (1959 [triangle]); Okabe & Oya (2000 [triangle]); Pocker & Fong (1980 [triangle]); Poowell (1953 [triangle]); Scapin et al. (1997 [triangle]); Serre et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m170-scheme1.jpg

Experimental

Crystal data

  • [Mn(C2O4)(C3H10N2)2]Cl·H2O
  • M r = 344.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m170-efi1.jpg
  • a = 9.1286 (17) Å
  • b = 11.807 (2) Å
  • c = 13.912 (3) Å
  • β = 100.037 (14)°
  • V = 1476.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 293 (2) K
  • 0.43 × 0.28 × 0.23 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.650, T max = 0.787
  • 3373 measured reflections
  • 3060 independent reflections
  • 3032 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.085
  • S = 1.00
  • 3060 reflections
  • 356 parameters
  • 8 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.43 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 521 Friedel pairs
  • Flack parameter: 0.040 (15)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065361/is2256sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065361/is2256Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Education Department of Shandong Province for research and development projects (No. J06A55)

supplementary crystallographic information

Comment

During the past decades, dicarboxylic acid has been widely used as one poly-dentate ligand involved in various metal chelation reactions to form transition or rare earth metal complexes that own thermal resistance of certain bacteria spores (Poowell, 1953; Church & Halvorson, 1959; Chung et al., 1971; Okabe & Oya, 2000) and the activation (Serre et al., 2005) or inhabitation (Pocker & Fong, 1980; Scapin et al., 1997) in some metallo-enzymes. In this paper, we report the structure of the title compound, (I).

In the title compound, the Mn atom is hexa-coordinated by four nitrogen atoms from two chealating propane-1,3-diamine ligands and two oxygen atoms from one oxalic acid, resulting in a slightly distorted octahedral MnO2N4 geometry for the metal (Fig. 1, Table 1). Mn—O and Mn—N bond lengths are in the range of 1.969 (2) - 2.020 (3) Å and 2.068 (3) - 2.113 (4) Å, respectively. Moreover, there exist weak intermolecular hydrogen bonds with the distance range of 2.830–3.423 Å (Table 2), forming a three-dimensional structure (Fig. 2).

Experimental

A mixed water and ethanol solution of manganese(III) acetate (1 mmoL) and oxalic acid (1 mmoL) was neutralized by propane-1,3-diamine. The resulted solution was saturated with 1 g sodium hydrochloride and evaporated at room temperature for one week. yellow block crystals were obtained with a yield of 21%. Anal. Calc. for C8H22ClMnN4O5: C 27.83, H 6.38, N 16.23%; Found: C 27.80, H 6.42, N 16.18%.

Refinement

The H atoms of the water molecule were located in a difference Fourier map and were refined with distance restraints of H···H = 1.38 (2) Å and O–H = 0.82 (2) Å, and with Uiso(H) = 1.2Ueq(O). Other H atoms were placed in calculated positions (C—H = 0.93 Å and N—H = 0.90 Å) and treated as riding, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.
The asymmetric unit of the title compound, drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are indicated by dashed lines.

Crystal data

[Mn(C2O4)(C3H10N2)2]Cl·H2OF000 = 720
Mr = 344.69Dx = 1.551 Mg m3
Monoclinic, PnMo Kα radiation λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 3060 reflections
a = 9.1286 (17) Åθ = 2.9–25.0º
b = 11.807 (2) ŵ = 1.10 mm1
c = 13.912 (3) ÅT = 293 (2) K
β = 100.037 (14)ºBlock, yellow
V = 1476.6 (5) Å30.43 × 0.28 × 0.23 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3060 independent reflections
Radiation source: fine-focus sealed tube3032 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.023
T = 293(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.3º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −1→10
Tmin = 0.650, Tmax = 0.787k = −14→1
3373 measured reflectionsl = −16→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032  w = 1/[σ2(Fo2) + (0.072P)2 + 0.2126P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.53 e Å3
3060 reflectionsΔρmin = −0.43 e Å3
356 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
8 restraintsExtinction coefficient: 0.0164 (13)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 521 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.040 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Mn10.11279 (5)0.45504 (4)0.50737 (3)0.02681 (15)
Mn20.91703 (6)0.99201 (4)0.36505 (4)0.02996 (16)
C10.3604 (4)0.3805 (3)0.3916 (3)0.0360 (8)
H1A0.32630.43550.34090.043*
H1B0.40340.31720.36190.043*
C20.4805 (5)0.4350 (4)0.4694 (3)0.0404 (9)
H2A0.50530.38320.52390.048*
H2B0.56970.44710.44170.048*
C30.4322 (5)0.5455 (3)0.5062 (3)0.0378 (9)
H3A0.39750.59420.45080.045*
H3B0.51780.58180.54530.045*
C4−0.1361 (5)0.5164 (3)0.6257 (3)0.0373 (8)
H4A−0.20800.48320.57380.045*
H4B−0.18480.57780.65410.045*
C5−0.0860 (5)0.4271 (3)0.7035 (3)0.0401 (9)
H5A−0.01350.46040.75500.048*
H5B−0.17090.40350.73190.048*
C6−0.0192 (5)0.3260 (3)0.6642 (3)0.0351 (8)
H6A−0.08860.29670.60900.042*
H6B−0.00380.26770.71400.042*
C7−0.1264 (4)0.4394 (3)0.3465 (3)0.0289 (7)
C8−0.0207 (4)0.5353 (3)0.3226 (3)0.0308 (8)
C90.5848 (5)0.9640 (4)0.3832 (3)0.0417 (9)
H9A0.49530.91990.36200.050*
H9B0.61560.95180.45270.050*
C100.5504 (5)1.0872 (4)0.3649 (4)0.0486 (10)
H10A0.46671.10790.39570.058*
H10B0.52141.09940.29520.058*
C110.6810 (5)1.1632 (3)0.4035 (3)0.0431 (9)
H11A0.64901.24160.39720.052*
H11B0.71391.14770.47230.052*
C121.0022 (5)1.0344 (3)0.5651 (3)0.0377 (9)
C131.1333 (5)1.0806 (3)0.5152 (3)0.0360 (8)
C141.1008 (6)0.9676 (4)0.1977 (3)0.0478 (11)
H14A1.10310.97930.12900.057*
H14B1.17501.01670.23490.057*
C151.1384 (6)0.8483 (4)0.2233 (4)0.0516 (11)
H15A1.22740.82820.19790.062*
H15B1.05820.80040.19130.062*
C161.1650 (5)0.8233 (4)0.3342 (3)0.0428 (9)
H16A1.20090.74630.34520.051*
H16B1.24150.87380.36700.051*
N11.0262 (4)0.8377 (2)0.3781 (2)0.0324 (6)
H1C1.05020.82180.44220.039*
H1D0.96060.78470.35150.039*
N20.9487 (5)0.9993 (3)0.2183 (2)0.0375 (8)
H2C0.88140.95340.18290.045*
H2D0.92841.07040.19650.045*
N30.7056 (4)0.9230 (2)0.3304 (2)0.0327 (7)
H3C0.67380.93410.26620.039*
H3D0.71430.84770.33980.039*
N40.8095 (4)1.1468 (3)0.3503 (2)0.0340 (7)
H4C0.87731.20090.37060.041*
H4D0.77621.15860.28630.041*
N50.3116 (4)0.5354 (2)0.5663 (2)0.0291 (6)
H5C0.28890.60590.58350.035*
H5D0.35010.49870.62170.035*
N60.2302 (4)0.3396 (2)0.4346 (2)0.0297 (6)
H6C0.26300.28370.47690.036*
H6D0.16480.30830.38600.036*
N70.1268 (4)0.3507 (2)0.6321 (2)0.0313 (6)
H7A0.16880.28450.61970.038*
H7B0.18770.38410.68180.038*
N8−0.0078 (4)0.5630 (2)0.5835 (2)0.0319 (6)
H8A0.05680.59370.63300.038*
H8B−0.04300.61990.54300.038*
O10.0942 (3)0.55365 (19)0.39175 (18)0.0302 (5)
O2−0.0783 (3)0.3917 (2)0.43141 (18)0.0301 (5)
O3−0.2391 (3)0.4152 (2)0.2880 (2)0.0402 (6)
O4−0.0474 (4)0.5855 (3)0.24339 (19)0.0440 (7)
O51.0023 (5)1.0508 (3)0.6534 (2)0.0583 (9)
O60.8993 (3)0.9836 (2)0.50604 (19)0.0362 (6)
O71.1132 (3)1.0658 (2)0.42064 (19)0.0365 (6)
O81.2408 (4)1.1305 (2)0.5639 (2)0.0457 (7)
O90.0571 (4)0.2740 (3)0.2343 (2)0.0600 (9)
H1W0.114 (5)0.246 (5)0.201 (4)0.072*
H2W−0.031 (2)0.256 (6)0.214 (4)0.072*
O100.7709 (7)0.7953 (3)0.6200 (3)0.0795 (13)
H3W0.828 (7)0.772 (6)0.586 (4)0.095*
H4W0.728 (8)0.854 (4)0.603 (5)0.095*
Cl10.72741 (14)0.19856 (8)0.10470 (7)0.0495 (3)
Cl20.72971 (12)0.67594 (8)0.41008 (8)0.0427 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0300 (3)0.0243 (2)0.0252 (2)−0.0010 (2)0.00198 (19)0.00041 (19)
Mn20.0339 (3)0.0262 (3)0.0277 (3)−0.0024 (2)−0.0005 (2)0.00098 (18)
C10.0375 (19)0.0338 (18)0.0389 (18)−0.0004 (16)0.0132 (17)−0.0015 (14)
C20.034 (2)0.0431 (19)0.044 (2)0.0002 (18)0.0074 (18)0.0010 (17)
C30.038 (2)0.036 (2)0.039 (2)−0.0106 (16)0.0072 (17)−0.0029 (15)
C40.039 (2)0.0368 (18)0.0375 (19)0.0047 (16)0.0108 (17)−0.0016 (15)
C50.044 (2)0.040 (2)0.038 (2)0.0020 (19)0.0125 (18)0.0046 (16)
C60.042 (2)0.0303 (17)0.0341 (18)−0.0043 (16)0.0088 (17)0.0045 (14)
C70.0311 (19)0.0277 (15)0.0270 (16)−0.0012 (14)0.0025 (15)−0.0032 (12)
C80.037 (2)0.0277 (17)0.0276 (17)0.0020 (15)0.0042 (16)0.0006 (13)
C90.037 (2)0.044 (2)0.045 (2)−0.0050 (18)0.0078 (18)0.0003 (17)
C100.037 (2)0.045 (2)0.062 (3)0.0071 (19)0.005 (2)−0.002 (2)
C110.049 (2)0.0307 (18)0.051 (2)0.0075 (18)0.0103 (19)−0.0051 (16)
C120.048 (2)0.0302 (17)0.032 (2)0.0042 (17)−0.0012 (18)0.0017 (14)
C130.036 (2)0.0230 (15)0.043 (2)0.0026 (16)−0.0082 (17)0.0000 (15)
C140.061 (3)0.044 (2)0.044 (2)0.001 (2)0.022 (2)0.0083 (18)
C150.068 (3)0.040 (2)0.052 (2)0.013 (2)0.025 (2)0.0015 (19)
C160.039 (2)0.0382 (19)0.052 (2)0.0076 (17)0.0103 (18)0.0076 (17)
N10.0350 (15)0.0268 (13)0.0335 (15)−0.0003 (13)0.0005 (13)0.0046 (12)
N20.052 (2)0.0294 (16)0.0305 (16)0.0041 (14)0.0041 (15)0.0026 (11)
N30.0333 (16)0.0261 (14)0.0348 (15)−0.0006 (13)−0.0049 (13)0.0040 (12)
N40.0404 (17)0.0233 (13)0.0361 (16)−0.0014 (13)0.0003 (14)0.0002 (11)
N50.0293 (16)0.0256 (14)0.0298 (15)−0.0026 (12)−0.0021 (13)−0.0019 (11)
N60.0374 (16)0.0235 (12)0.0284 (14)−0.0014 (13)0.0063 (12)0.0001 (11)
N70.0385 (16)0.0265 (13)0.0276 (14)−0.0007 (13)0.0023 (13)0.0000 (11)
N80.0369 (17)0.0257 (12)0.0322 (15)0.0019 (13)0.0033 (14)−0.0001 (11)
O10.0371 (14)0.0263 (11)0.0244 (11)−0.0045 (10)−0.0022 (10)0.0027 (9)
O20.0336 (12)0.0258 (10)0.0291 (11)−0.0037 (10)0.0003 (10)−0.0006 (9)
O30.0378 (16)0.0410 (14)0.0380 (13)−0.0050 (13)−0.0041 (13)−0.0037 (12)
O40.0555 (18)0.0412 (14)0.0300 (13)−0.0042 (14)−0.0072 (13)0.0097 (11)
O50.073 (2)0.069 (2)0.0287 (15)−0.0011 (19)−0.0039 (16)−0.0109 (13)
O60.0444 (17)0.0346 (12)0.0281 (13)−0.0032 (12)0.0018 (12)0.0045 (10)
O70.0375 (15)0.0334 (13)0.0356 (14)−0.0069 (12)−0.0019 (12)0.0007 (11)
O80.0472 (17)0.0290 (13)0.0522 (16)−0.0039 (12)−0.0155 (14)−0.0002 (12)
O90.059 (2)0.074 (2)0.0471 (17)0.0031 (19)0.0081 (16)−0.0112 (16)
O100.122 (4)0.048 (2)0.081 (3)−0.007 (2)0.052 (3)−0.0004 (19)
Cl10.0658 (7)0.0332 (4)0.0420 (5)−0.0013 (5)−0.0118 (5)0.0025 (4)
Cl20.0448 (5)0.0307 (4)0.0529 (5)0.0008 (4)0.0090 (4)0.0068 (4)

Geometric parameters (Å, °)

Mn1—O11.969 (2)C10—C111.514 (7)
Mn1—O22.019 (3)C10—H10A0.9700
Mn1—N52.085 (3)C10—H10B0.9700
Mn1—N82.089 (3)C11—N41.504 (5)
Mn1—N62.100 (3)C11—H11A0.9700
Mn1—N72.113 (3)C11—H11B0.9700
Mn2—O61.999 (3)C12—O51.243 (5)
Mn2—O72.020 (3)C12—O61.284 (5)
Mn2—N42.068 (3)C12—C131.582 (6)
Mn2—N12.069 (3)C13—O81.241 (5)
Mn2—N32.073 (3)C13—O71.307 (5)
Mn2—N22.113 (4)C14—C151.478 (6)
C1—N61.500 (5)C14—N21.513 (7)
C1—C21.541 (6)C14—H14A0.9700
C1—H1A0.9700C14—H14B0.9700
C1—H1B0.9700C15—C161.548 (6)
C2—C31.495 (6)C15—H15A0.9700
C2—H2A0.9700C15—H15B0.9700
C2—H2B0.9700C16—N11.509 (5)
C3—N51.499 (5)C16—H16A0.9700
C3—H3A0.9700C16—H16B0.9700
C3—H3B0.9700N1—H1C0.9000
C4—N81.503 (5)N1—H1D0.9000
C4—C51.523 (6)N2—H2C0.9000
C4—H4A0.9700N2—H2D0.9000
C4—H4B0.9700N3—H3C0.9000
C5—C61.488 (6)N3—H3D0.9000
C5—H5A0.9700N4—H4C0.9000
C5—H5B0.9700N4—H4D0.9000
C6—N71.506 (5)N5—H5C0.9000
C6—H6A0.9700N5—H5D0.9000
C6—H6B0.9700N6—H6C0.9000
C7—O31.229 (5)N6—H6D0.9000
C7—O21.314 (4)N7—H7A0.9000
C7—C81.560 (5)N7—H7B0.9000
C8—O41.238 (5)N8—H8A0.9000
C8—O11.311 (5)N8—H8B0.9000
C9—C101.501 (6)O9—H1W0.82 (5)
C9—N31.507 (6)O9—H2W0.83 (3)
C9—H9A0.9700O10—H3W0.81 (6)
C9—H9B0.9700O10—H4W0.81 (5)
O1—Mn1—O281.23 (11)N4—C11—C10112.5 (3)
O1—Mn1—N589.86 (12)N4—C11—H11A109.1
O2—Mn1—N5171.03 (11)C10—C11—H11A109.1
O1—Mn1—N894.33 (11)N4—C11—H11B109.1
O2—Mn1—N890.45 (12)C10—C11—H11B109.1
N5—Mn1—N891.28 (13)H11A—C11—H11B107.8
O1—Mn1—N688.21 (11)O5—C12—O6125.4 (4)
O2—Mn1—N688.53 (11)O5—C12—C13120.6 (4)
N5—Mn1—N690.15 (12)O6—C12—C13113.9 (3)
N8—Mn1—N6177.09 (12)O8—C13—O7124.9 (4)
O1—Mn1—N7178.39 (13)O8—C13—C12120.7 (4)
O2—Mn1—N797.88 (11)O7—C13—C12114.3 (3)
N5—Mn1—N791.05 (12)C15—C14—N2111.9 (4)
N8—Mn1—N784.33 (12)C15—C14—H14A109.2
N6—Mn1—N793.11 (12)N2—C14—H14A109.2
O6—Mn2—O782.17 (12)C15—C14—H14B109.2
O6—Mn2—N491.31 (12)N2—C14—H14B109.2
O7—Mn2—N491.72 (12)H14A—C14—H14B107.9
O6—Mn2—N189.44 (12)C14—C15—C16114.3 (4)
O7—Mn2—N188.01 (12)C14—C15—H15A108.7
N4—Mn2—N1179.16 (14)C16—C15—H15A108.7
O6—Mn2—N388.68 (13)C14—C15—H15B108.7
O7—Mn2—N3170.31 (13)C16—C15—H15B108.7
N4—Mn2—N385.28 (13)H15A—C15—H15B107.6
N1—Mn2—N395.11 (13)N1—C16—C15112.7 (4)
O6—Mn2—N2176.79 (16)N1—C16—H16A109.1
O7—Mn2—N295.20 (14)C15—C16—H16A109.1
N4—Mn2—N290.61 (13)N1—C16—H16B109.1
N1—Mn2—N288.62 (13)C15—C16—H16B109.1
N3—Mn2—N294.04 (15)H16A—C16—H16B107.8
N6—C1—C2111.7 (3)C16—N1—Mn2119.3 (2)
N6—C1—H1A109.3C16—N1—H1C107.5
C2—C1—H1A109.3Mn2—N1—H1C107.5
N6—C1—H1B109.3C16—N1—H1D107.5
C2—C1—H1B109.3Mn2—N1—H1D107.5
H1A—C1—H1B107.9H1C—N1—H1D107.0
C3—C2—C1112.9 (3)C14—N2—Mn2117.2 (3)
C3—C2—H2A109.0C14—N2—H2C108.0
C1—C2—H2A109.0Mn2—N2—H2C108.0
C3—C2—H2B109.0C14—N2—H2D108.0
C1—C2—H2B109.0Mn2—N2—H2D108.0
H2A—C2—H2B107.8H2C—N2—H2D107.2
C2—C3—N5114.3 (3)C9—N3—Mn2119.5 (2)
C2—C3—H3A108.7C9—N3—H3C107.5
N5—C3—H3A108.7Mn2—N3—H3C107.5
C2—C3—H3B108.7C9—N3—H3D107.5
N5—C3—H3B108.7Mn2—N3—H3D107.5
H3A—C3—H3B107.6H3C—N3—H3D107.0
N8—C4—C5111.9 (3)C11—N4—Mn2117.5 (2)
N8—C4—H4A109.2C11—N4—H4C107.9
C5—C4—H4A109.2Mn2—N4—H4C107.9
N8—C4—H4B109.2C11—N4—H4D107.9
C5—C4—H4B109.2Mn2—N4—H4D107.9
H4A—C4—H4B107.9H4C—N4—H4D107.2
C6—C5—C4112.7 (3)C3—N5—Mn1119.4 (2)
C6—C5—H5A109.1C3—N5—H5C107.5
C4—C5—H5A109.1Mn1—N5—H5C107.5
C6—C5—H5B109.1C3—N5—H5D107.5
C4—C5—H5B109.1Mn1—N5—H5D107.5
H5A—C5—H5B107.8H5C—N5—H5D107.0
C5—C6—N7113.2 (3)C1—N6—Mn1119.3 (2)
C5—C6—H6A108.9C1—N6—H6C107.5
N7—C6—H6A108.9Mn1—N6—H6C107.5
C5—C6—H6B108.9C1—N6—H6D107.5
N7—C6—H6B108.9Mn1—N6—H6D107.5
H6A—C6—H6B107.7H6C—N6—H6D107.0
O3—C7—O2127.3 (4)C6—N7—Mn1115.2 (2)
O3—C7—C8120.4 (3)C6—N7—H7A108.5
O2—C7—C8112.3 (3)Mn1—N7—H7A108.5
O4—C8—O1125.6 (4)C6—N7—H7B108.5
O4—C8—C7120.2 (3)Mn1—N7—H7B108.5
O1—C8—C7114.2 (3)H7A—N7—H7B107.5
C10—C9—N3112.2 (4)C4—N8—Mn1119.4 (2)
C10—C9—H9A109.2C4—N8—H8A107.5
N3—C9—H9A109.2Mn1—N8—H8A107.5
C10—C9—H9B109.2C4—N8—H8B107.5
N3—C9—H9B109.2Mn1—N8—H8B107.5
H9A—C9—H9B107.9H8A—N8—H8B107.0
C9—C10—C11112.7 (4)C8—O1—Mn1116.5 (2)
C9—C10—H10A109.1C7—O2—Mn1115.8 (2)
C11—C10—H10A109.1C12—O6—Mn2115.4 (3)
C9—C10—H10B109.1C13—O7—Mn2113.7 (3)
C11—C10—H10B109.1H1W—O9—H2W112 (5)
H10A—C10—H10B107.8H3W—O10—H4W117 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O10—H3W···Cl20.81 (6)2.70 (7)3.205 (5)122 (7)
O10—H4W···O60.81 (5)2.71 (7)3.078 (5)110 (5)
O9—H2W···Cl1i0.83 (3)2.55 (2)3.348 (4)163 (5)
O9—H1W···O10ii0.82 (5)2.03 (5)2.845 (6)170 (6)
N8—H8B···Cl2i0.902.613.366 (3)142
N8—H8A···O3iii0.902.593.426 (4)154
N7—H7B···O4iii0.902.453.195 (4)141
N7—H7A···O8iv0.902.133.014 (4)169
N6—H6D···O90.902.203.054 (4)157
N6—H6C···O8iv0.902.213.046 (4)155
N5—H5D···O4iii0.902.042.942 (4)176
N5—H5C···Cl1v0.902.413.299 (3)172
N4—H4D···Cl1vi0.902.533.423 (3)170
N4—H4C···O2vii0.902.423.206 (4)147
N3—H3D···Cl20.902.253.115 (3)162
N3—H3C···O5viii0.902.022.831 (4)149
N2—H2D···Cl1vi0.902.543.317 (4)144
N2—H2C···O8viii0.902.153.024 (5)163
N1—H1D···Cl20.902.713.404 (3)135
N1—H1C···Cl1iii0.902.553.388 (3)155

Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1, z−1/2; (iii) x+1/2, −y+1, z+1/2; (iv) x−1, y−1, z; (v) x−1/2, −y+1, z+1/2; (vi) x, y+1, z; (vii) x+1, y+1, z; (viii) x−1/2, −y+2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2256).

References

  • Bruker (2001). SADABS, SAINT-Plus and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chung, L., Rajan, K. S., Merdinger, E. & Crecz, N. (1971). Biophys. J.469, 469–472. [PubMed]
  • Church, B. S. & Halvorson, H. (1959). Nature (London), 183, 124–125. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Okabe, N. & Oya, N. (2000). Acta Cryst. C56, 1416–1417. [PubMed]
  • Pocker, Y. & Fong, C. T. O. (1980). Biochemistry, 16, 2045–2049. [PubMed]
  • Poowell, J. F. (1953). Biochemistry, 54, 205–207.
  • Scapin, G., Reddy, S. G., Zheng, R. & Blanchard, J. S. (1997). Biochemistry, 36, 15081–15092. [PubMed]
  • Serre, C., Marrot, J. & Ferey, G. (2005). Inorg. Chem.44, 654–657. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography