PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m160.
Published online 2007 December 12. doi:  10.1107/S1600536807065440
PMCID: PMC2915098

Bis[1,3-bis­(diphenyl­phosphinoylimino)isoindolinato-κ3 O,N,O′]calcium(II)

Abstract

In the title compound, [Ca(C32H24N3O2P2)2], the 1,3-bis­(diphenyl­phosphinoylimino)isoindoline ligand adopts a tridentate coordination mode. The compound exhibits a distorted octa­hedral geometry. The Ca atom lies on a twofold rotation axis.

Related literature

For a related compound with similar octa­hedral geometry, see: Cole et al. (2006 [triangle]). For related literature, see: Shang (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m160-scheme1.jpg

Experimental

Crystal data

  • [Ca(C32H24N3O2P2)2]
  • M r = 1129.04
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m160-efi2.jpg
  • a = 26.351 (2) Å
  • b = 12.4790 (11) Å
  • c = 21.1997 (19) Å
  • β = 126.1720 (10)°
  • V = 5627.4 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.28 mm−1
  • T = 293 (2) K
  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.837, T max = 0.973
  • 11452 measured reflections
  • 4959 independent reflections
  • 4175 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.135
  • S = 1.04
  • 4959 reflections
  • 357 parameters
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 1999 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065440/ww2103sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065440/ww2103Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was carried out under the sponsorship of the Overseas Foundation of Shanxi Province, People’s Republic of China.

supplementary crystallographic information

Comment

The bis(N-diphenylphosphinato)-isoindoline-1,3-diimine ligand is a new type of tridentate ligand (Shang, 2007). There are six atoms coordinated to calcium ion, the four oxygen atoms are approximately in an equatorial plane with calcium(II), the mean deviation from the plane is 0.3218Å and the two nitrogen atoms are in axial positions [N2—Ca—N2i 165.55 (9)° (symmetry code i: -x, y, 1/2 - z)]. Because the calcium ion is coordinated via two oxygen of the tridentate ligand, two six-membered rings of O1—P1—N1—C13—N2—Ca1 and O2i—P2i—N3i—C20—N2—Ca1 are formed. The dihedral angles between the two six-membered rings and the isoindoline ring are 12.5° and 14.0° respectively. The Ca—O and Ca—N bond lengths of the compound are 2.2581 (18) [Ca1—O1], 2.2646 (18) [Ca1—O2] and 2.5513 (18) [Ca1—N2] Å, respectively. The values are comparable to the octahedral compound [Ca(o-TolForm)2(thf)2], which can provide four nitrogen and two oxygen atoms to coordinate calcium(II), the average bond length of Ca—O is 2.368 (2) and Ca—N is 2.43 (2)Å (Cole et al., 2006).

Experimental

The red crystal of bis(N-diphenylphosphinato)-isoindoline-1,3-diimine (Shang, 2007) (0.287 g, 0.53 mmol) was dissolved in absolute ethanol (20 ml), the calcium chloride (0.060 g, 0.53 mmol) was added to the solution in room temperature and the mixture was reacted for 24 h before getting the clear yellow solution, the solvent was evaporated slowly to give pink crystals of title compund. Yield: 0.14 g, 47%. Spectroscopic analysis, 1H NMR (300 MHz, CDCl3, δ): 7.73–7.88(m, 16H, phenyl; 4H, isoindoline); 7.51–7.54 (t, 4H, J=8.1, isoindoline); 7.10–7.27 (m, 24H, phenyl). 31P-{1H} NMR (300 MHz, CDCl3, δ): 20.2(s).

Refinement

H atoms were placed in their idealized positions and allowed to ride on the respective parent atoms with C—H 0.93 Å, and with Uiso(H) = 1.2Ueq (parent atom).

Figures

Fig. 1.
Molecular structure of I, showing the atom-labeling scheme and 20% probability displacement ellipsoids. Symmetry codes: (i) -x, y, -z + 1/2.

Crystal data

[Ca(C32H24N3O2P2)2]F000 = 2344
Mr = 1129.04Dx = 1.333 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4426 reflections
a = 26.351 (2) Åθ = 2.4–25.9º
b = 12.4790 (11) ŵ = 0.28 mm1
c = 21.1997 (19) ÅT = 293 (2) K
β = 126.1720 (10)ºBlock, pink
V = 5627.4 (9) Å30.20 × 0.15 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer4959 independent reflections
Radiation source: fine-focus sealed tube4175 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
T = 293(2) Kθmax = 25.0º
ω scanθmin = 1.9º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −31→17
Tmin = 0.837, Tmax = 0.973k = −14→14
11452 measured reflectionsl = −22→25

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.135  w = 1/[σ2(Fo2) + (0.075P)2 + 4.1489P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4959 reflectionsΔρmax = 0.40 e Å3
357 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ca10.00000.39576 (5)0.25000.03918 (18)
P10.12637 (3)0.56655 (5)0.33048 (4)0.04665 (19)
P20.02345 (3)0.23193 (6)0.13903 (4)0.0498 (2)
O10.06204 (8)0.53300 (15)0.26479 (10)0.0621 (5)
O20.04545 (8)0.27801 (16)0.21607 (10)0.0620 (5)
N10.16798 (9)0.49240 (15)0.40938 (11)0.0447 (5)
N20.09048 (8)0.37004 (14)0.39391 (10)0.0401 (4)
N3−0.05179 (10)0.22572 (18)0.06938 (12)0.0553 (6)
C10.17484 (14)0.57710 (19)0.29706 (17)0.0566 (7)
C20.23898 (16)0.5685 (3)0.3464 (2)0.0778 (9)
H2B0.25920.55830.39960.093*
C30.2736 (2)0.5750 (4)0.3164 (4)0.1129 (15)
H3B0.31710.56840.35020.135*
C40.2464 (4)0.5902 (4)0.2414 (5)0.137 (2)
H4A0.27070.59470.22280.164*
C50.1831 (4)0.5992 (4)0.1915 (3)0.1284 (19)
H5A0.16410.61050.13860.154*
C60.1460 (2)0.5919 (3)0.2183 (2)0.0868 (10)
H6A0.10250.59700.18360.104*
C70.12490 (12)0.6964 (2)0.36669 (15)0.0547 (6)
C80.07017 (16)0.7308 (3)0.3552 (2)0.0752 (9)
H8A0.03400.68910.32690.090*
C90.0699 (2)0.8278 (4)0.3864 (3)0.1074 (14)
H9A0.03300.85130.37840.129*
C100.1221 (2)0.8895 (3)0.4283 (3)0.1118 (15)
H10A0.12110.95390.44960.134*
C110.1762 (2)0.8569 (3)0.4391 (2)0.0951 (12)
H11A0.21200.89960.46720.114*
C120.17765 (14)0.7608 (2)0.40839 (18)0.0681 (8)
H12A0.21460.73900.41580.082*
C130.14975 (10)0.41314 (16)0.43053 (13)0.0380 (5)
C140.19536 (10)0.35340 (17)0.50380 (12)0.0391 (5)
C150.25946 (11)0.36174 (19)0.55869 (14)0.0460 (5)
H15A0.28230.41530.55530.055*
C160.28879 (12)0.2881 (2)0.61895 (14)0.0513 (6)
H16A0.33210.29190.65660.062*
C170.25463 (13)0.2089 (2)0.62393 (14)0.0547 (6)
H17A0.27520.16030.66510.066*
C180.19053 (12)0.2007 (2)0.56887 (14)0.0508 (6)
H18A0.16750.14730.57210.061*
C190.16168 (11)0.27412 (18)0.50904 (13)0.0415 (5)
C200.09548 (11)0.28795 (18)0.44013 (13)0.0426 (5)
C210.05040 (12)0.0949 (2)0.15292 (17)0.0561 (7)
C220.05167 (16)0.0416 (2)0.0977 (2)0.0803 (9)
H22A0.03690.07560.05080.096*
C230.0743 (2)−0.0612 (3)0.1100 (3)0.1070 (15)
H23A0.0739−0.09610.07100.128*
C240.0965 (2)−0.1109 (4)0.1762 (4)0.136 (2)
H24A0.1124−0.18000.18420.163*
C250.0960 (2)−0.0614 (4)0.2325 (3)0.127 (2)
H25A0.1112−0.09700.27900.152*
C260.07300 (17)0.0426 (3)0.2215 (2)0.0937 (12)
H26A0.07300.07640.26060.112*
C270.05800 (14)0.2982 (2)0.09748 (17)0.0580 (7)
C280.12267 (17)0.2995 (3)0.1398 (2)0.0836 (10)
H28A0.14720.26870.18930.100*
C290.1514 (2)0.3465 (4)0.1089 (3)0.1113 (14)
H29A0.19490.34600.13740.134*
C300.1164 (3)0.3927 (4)0.0380 (3)0.1186 (17)
H30A0.13580.42420.01750.142*
C310.0531 (3)0.3935 (4)−0.0037 (3)0.1218 (16)
H31A0.02920.4266−0.05230.146*
C320.0238 (2)0.3460 (3)0.0250 (2)0.0955 (11)
H32A−0.01990.3459−0.00500.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ca10.0386 (4)0.0401 (3)0.0360 (3)0.0000.0204 (3)0.000
P10.0463 (4)0.0371 (3)0.0518 (4)−0.0034 (3)0.0263 (3)0.0065 (3)
P20.0419 (4)0.0577 (4)0.0489 (4)0.0108 (3)0.0264 (3)−0.0027 (3)
O10.0561 (11)0.0557 (11)0.0553 (10)−0.0095 (9)0.0223 (9)0.0121 (8)
O20.0436 (10)0.0838 (13)0.0508 (10)0.0106 (9)0.0235 (8)−0.0090 (9)
N10.0411 (10)0.0383 (10)0.0520 (11)−0.0033 (8)0.0259 (9)0.0042 (8)
N20.0379 (10)0.0403 (10)0.0422 (10)−0.0024 (8)0.0236 (9)0.0005 (8)
N30.0466 (12)0.0641 (13)0.0494 (12)0.0124 (10)0.0252 (10)−0.0099 (10)
C10.0760 (19)0.0373 (12)0.0700 (17)−0.0044 (12)0.0506 (15)0.0060 (12)
C20.078 (2)0.073 (2)0.107 (3)0.0026 (16)0.068 (2)0.0189 (18)
C30.115 (3)0.099 (3)0.179 (5)0.010 (2)0.117 (4)0.033 (3)
C40.209 (6)0.100 (3)0.214 (7)0.000 (4)0.188 (6)0.021 (4)
C50.230 (7)0.102 (3)0.125 (4)−0.022 (4)0.145 (5)0.002 (3)
C60.123 (3)0.073 (2)0.079 (2)−0.011 (2)0.068 (2)0.0041 (17)
C70.0567 (15)0.0437 (13)0.0543 (14)0.0071 (12)0.0276 (13)0.0102 (11)
C80.0617 (19)0.074 (2)0.083 (2)0.0110 (15)0.0385 (17)0.0006 (17)
C90.092 (3)0.108 (3)0.121 (3)0.033 (3)0.062 (3)−0.007 (3)
C100.123 (4)0.075 (2)0.100 (3)0.025 (3)0.045 (3)−0.020 (2)
C110.097 (3)0.0507 (18)0.093 (2)0.0058 (18)0.032 (2)−0.0062 (17)
C120.0599 (17)0.0423 (14)0.0785 (19)0.0003 (12)0.0277 (15)0.0001 (13)
C130.0405 (12)0.0342 (11)0.0434 (12)−0.0013 (9)0.0271 (10)−0.0025 (9)
C140.0411 (12)0.0358 (11)0.0413 (12)−0.0008 (9)0.0247 (10)−0.0031 (9)
C150.0409 (13)0.0422 (12)0.0499 (13)−0.0036 (10)0.0240 (11)−0.0022 (10)
C160.0417 (13)0.0513 (14)0.0450 (13)0.0003 (11)0.0168 (11)−0.0042 (11)
C170.0599 (16)0.0496 (14)0.0438 (13)0.0060 (12)0.0246 (13)0.0061 (11)
C180.0520 (15)0.0495 (13)0.0479 (13)−0.0043 (11)0.0277 (12)0.0077 (11)
C190.0439 (13)0.0428 (12)0.0404 (11)−0.0031 (10)0.0262 (10)−0.0004 (10)
C200.0435 (13)0.0458 (12)0.0399 (12)−0.0051 (10)0.0254 (10)0.0002 (10)
C210.0401 (14)0.0548 (15)0.0686 (17)0.0039 (11)0.0294 (13)0.0092 (13)
C220.094 (2)0.0589 (18)0.116 (3)0.0194 (17)0.078 (2)0.0013 (18)
C230.097 (3)0.062 (2)0.186 (5)0.015 (2)0.097 (3)−0.006 (3)
C240.082 (3)0.058 (2)0.201 (6)0.013 (2)0.046 (4)0.018 (3)
C250.122 (4)0.066 (3)0.110 (3)−0.002 (2)0.023 (3)0.035 (2)
C260.093 (3)0.075 (2)0.077 (2)−0.0154 (19)0.030 (2)0.0097 (18)
C270.0699 (18)0.0457 (14)0.0656 (16)0.0075 (12)0.0440 (15)−0.0001 (12)
C280.075 (2)0.091 (2)0.089 (2)−0.0115 (18)0.0504 (19)0.0041 (19)
C290.111 (3)0.110 (3)0.145 (4)−0.030 (3)0.093 (3)−0.004 (3)
C300.185 (5)0.087 (3)0.144 (4)−0.023 (3)0.130 (4)0.002 (3)
C310.161 (5)0.121 (4)0.110 (3)0.015 (3)0.095 (4)0.040 (3)
C320.103 (3)0.103 (3)0.083 (2)0.023 (2)0.056 (2)0.029 (2)

Geometric parameters (Å, °)

Ca1—O12.2581 (18)C10—H10A0.9300
Ca1—O1i2.2581 (18)C11—C121.376 (4)
Ca1—O22.2646 (18)C11—H11A0.9300
Ca1—O2i2.2646 (18)C12—H12A0.9300
Ca1—N2i2.5513 (18)C13—C141.486 (3)
Ca1—N22.5513 (18)C14—C191.377 (3)
Ca1—P23.4369 (8)C14—C151.377 (3)
Ca1—P2i3.4369 (8)C15—C161.381 (3)
Ca1—P13.4403 (7)C15—H15A0.9300
Ca1—P1i3.4403 (7)C16—C171.382 (4)
P1—O11.4837 (18)C16—H16A0.9300
P1—N11.6406 (19)C17—C181.378 (4)
P1—C11.794 (3)C17—H17A0.9300
P1—C71.803 (3)C18—C191.374 (3)
P2—O21.4888 (19)C18—H18A0.9300
P2—N31.631 (2)C19—C201.483 (3)
P2—C271.799 (3)C20—N3i1.302 (3)
P2—C211.808 (3)C21—C221.363 (4)
N1—C131.290 (3)C21—C261.367 (4)
N2—C201.369 (3)C22—C231.373 (5)
N2—C131.378 (3)C22—H22A0.9300
N3—C20i1.302 (3)C23—C241.313 (7)
C1—C21.369 (4)C23—H23A0.9300
C1—C61.379 (4)C24—C251.351 (8)
C2—C31.388 (5)C24—H24A0.9300
C2—H2B0.9300C25—C261.393 (6)
C3—C41.316 (8)C25—H25A0.9300
C3—H3B0.9300C26—H26A0.9300
C4—C51.354 (7)C27—C321.377 (4)
C4—H4A0.9300C27—C281.380 (4)
C5—C61.393 (6)C28—C291.390 (5)
C5—H5A0.9300C28—H28A0.9300
C6—H6A0.9300C29—C301.344 (7)
C7—C81.382 (4)C29—H29A0.9300
C7—C121.382 (4)C30—C311.350 (7)
C8—C91.381 (5)C30—H30A0.9300
C8—H8A0.9300C31—C321.366 (6)
C9—C101.353 (6)C31—H31A0.9300
C9—H9A0.9300C32—H32A0.9300
C10—C111.365 (6)
O1—Ca1—O1i81.34 (11)C4—C5—H5A119.5
O1—Ca1—O293.49 (8)C6—C5—H5A119.5
O1i—Ca1—O2157.41 (7)C1—C6—C5119.0 (4)
O1—Ca1—O2i157.41 (7)C1—C6—H6A120.5
O1i—Ca1—O2i93.49 (8)C5—C6—H6A120.5
O2—Ca1—O2i99.09 (11)C8—C7—C12118.9 (3)
O1—Ca1—N2i110.51 (6)C8—C7—P1119.1 (2)
O1i—Ca1—N2i80.81 (6)C12—C7—P1121.9 (2)
O2—Ca1—N2i80.48 (6)C9—C8—C7119.2 (3)
O2i—Ca1—N2i90.12 (6)C9—C8—H8A120.4
O1—Ca1—N280.81 (6)C7—C8—H8A120.4
O1i—Ca1—N2110.51 (6)C10—C9—C8121.5 (4)
O2—Ca1—N290.12 (6)C10—C9—H9A119.2
O2i—Ca1—N280.48 (6)C8—C9—H9A119.2
N2i—Ca1—N2165.55 (9)C9—C10—C11119.8 (4)
O1—Ca1—P297.95 (6)C9—C10—H10A120.1
O1i—Ca1—P2139.82 (5)C11—C10—H10A120.1
O2—Ca1—P218.93 (4)C10—C11—C12119.9 (4)
O2i—Ca1—P2100.02 (6)C10—C11—H11A120.0
N2i—Ca1—P261.66 (4)C12—C11—H11A120.0
N2—Ca1—P2108.97 (4)C11—C12—C7120.7 (3)
O1—Ca1—P2i139.82 (5)C11—C12—H12A119.6
O1i—Ca1—P2i97.95 (6)C7—C12—H12A119.6
O2—Ca1—P2i100.02 (6)N1—C13—N2129.4 (2)
O2i—Ca1—P2i18.93 (4)N1—C13—C14120.7 (2)
N2i—Ca1—P2i108.97 (5)N2—C13—C14109.96 (18)
N2—Ca1—P2i61.66 (4)C19—C14—C15120.9 (2)
P2—Ca1—P2i107.00 (3)C19—C14—C13106.42 (19)
O1—Ca1—P118.51 (4)C15—C14—C13132.6 (2)
O1i—Ca1—P190.49 (5)C14—C15—C16118.0 (2)
O2—Ca1—P191.20 (5)C14—C15—H15A121.0
O2i—Ca1—P1141.54 (5)C16—C15—H15A121.0
N2i—Ca1—P1128.23 (4)C15—C16—C17120.8 (2)
N2—Ca1—P162.42 (4)C15—C16—H16A119.6
P2—Ca1—P1101.274 (17)C17—C16—H16A119.6
P2i—Ca1—P1122.787 (15)C18—C17—C16121.1 (2)
O1—Ca1—P1i90.49 (5)C18—C17—H17A119.5
O1i—Ca1—P1i18.51 (4)C16—C17—H17A119.5
O2—Ca1—P1i141.54 (5)C19—C18—C17117.8 (2)
O2i—Ca1—P1i91.20 (5)C19—C18—H18A121.1
N2i—Ca1—P1i62.42 (4)C17—C18—H18A121.1
N2—Ca1—P1i128.23 (4)C18—C19—C14121.4 (2)
P2—Ca1—P1i122.787 (15)C18—C19—C20132.5 (2)
P2i—Ca1—P1i101.274 (17)C14—C19—C20106.04 (19)
P1—Ca1—P1i103.44 (3)N3i—C20—N2129.2 (2)
O1—P1—N1120.24 (10)N3i—C20—C19120.1 (2)
O1—P1—C1109.60 (13)N2—C20—C19110.65 (18)
N1—P1—C1103.94 (12)C22—C21—C26117.6 (3)
O1—P1—C7110.69 (12)C22—C21—P2121.9 (2)
N1—P1—C7104.01 (11)C26—C21—P2120.4 (3)
C1—P1—C7107.54 (12)C21—C22—C23121.3 (4)
N1—P1—Ca191.43 (7)C21—C22—H22A119.3
C1—P1—Ca1123.78 (9)C23—C22—H22A119.3
C7—P1—Ca1120.67 (9)C24—C23—C22120.9 (5)
O2—P2—N3119.32 (10)C24—C23—H23A119.5
O2—P2—C27112.18 (13)C22—C23—H23A119.5
N3—P2—C27105.94 (13)C23—C24—C25119.8 (4)
O2—P2—C21108.99 (13)C23—C24—H24A120.1
N3—P2—C21104.66 (12)C25—C24—H24A120.1
C27—P2—C21104.56 (12)C24—C25—C26120.5 (4)
N3—P2—Ca191.97 (7)C24—C25—H25A119.7
C27—P2—Ca1114.13 (9)C26—C25—H25A119.7
C21—P2—Ca1131.54 (10)C21—C26—C25119.7 (4)
P1—O1—Ca1132.60 (10)C21—C26—H26A120.1
P2—O2—Ca1131.50 (10)C25—C26—H26A120.1
C13—N1—P1128.67 (17)C32—C27—C28117.7 (3)
C20—N2—C13106.88 (18)C32—C27—P2124.0 (3)
C20—N2—Ca1125.26 (14)C28—C27—P2118.3 (2)
C13—N2—Ca1124.95 (14)C27—C28—C29120.3 (4)
C20i—N3—P2127.09 (18)C27—C28—H28A119.9
C2—C1—C6119.0 (3)C29—C28—H28A119.9
C2—C1—P1122.6 (2)C30—C29—C28120.3 (4)
C6—C1—P1118.4 (3)C30—C29—H29A119.9
C1—C2—C3119.6 (4)C28—C29—H29A119.9
C1—C2—H2B120.2C29—C30—C31120.1 (4)
C3—C2—H2B120.2C29—C30—H30A120.0
C4—C3—C2121.7 (5)C31—C30—H30A120.0
C4—C3—H3B119.1C30—C31—C32120.7 (4)
C2—C3—H3B119.1C30—C31—H31A119.7
C3—C4—C5119.8 (4)C32—C31—H31A119.7
C3—C4—H4A120.1C31—C32—C27121.0 (4)
C5—C4—H4A120.1C31—C32—H32A119.5
C4—C5—C6120.9 (5)C27—C32—H32A119.5

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2103).

References

  • Bruker (2000). SMART (Version 5.0) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cole, M. L., Deacon, G. B., Forsyth, C. M., Konstas, K. & Junk, P. C. (2006). Dalton Trans. pp. 3360–3367. [PubMed]
  • Shang, D.-L. (2007). MSc thesis, Shanxi University, People’s Republic of China.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1999). SHELXTL/PC Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography