PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m148–m149.
Published online 2007 December 12. doi:  10.1107/S1600536807065014
PMCID: PMC2915091

Bis(tetra­phenyl­phospho­nium) bis­[N-(octyl­sulfon­yl)dithio­carbimato(2–)-κ2 S,S′]­nickelate(II)

Abstract

The Ni atom in the title complex, (C24H20P)2[Ni(C9H17NO2S3)2], lies on a twofold axis within a square-planar geometry defined by four S atoms derived from two dithio­carbimate dianions, each forming a four-membered chelate ring. A small distortion, described by a deviation of the NiII atom by 0.083 (1) Å from the plane through the four S atoms, and also by the torsion angles about the Ni—S bonds, implies a folded conformation for the chelate ring.

Related literature

The title complex is a new member of the class of Ni complexes with general formula [Ni(R—SO2N=CS2)2]2− (Hummel et al., 1989 [triangle]; Franca et al., 2006 [triangle]; Oliveira et al., 1997 [triangle], 1999 [triangle], 2003 [triangle]). The literature describes only two other complexes of this class having tetra­phenyl­phospho­nium as counter-ion (Hummel & Korn, 1989 [triangle]; Allen, 2002 [triangle]). For other related literature, see: Hogarth (2005 [triangle]); Vogel (1966 [triangle]); Cremer & Pople (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m148-scheme1.jpg

Experimental

Crystal data

  • (C24H20P)2[Ni(C9H17NO2S3)2]
  • M r = 1272.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m148-efi4.jpg
  • a = 29.113 (4) Å
  • b = 10.425 (2) Å
  • c = 22.966 (3) Å
  • β = 115.50 (1)°
  • V = 6291.3 (18) Å3
  • Z = 4
  • Cu Kα radiation
  • μ = 3.17 mm−1
  • T = 297 (2) K
  • 0.16 × 0.16 × 0.08 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: Gaussian (Spek, 2003 [triangle]) T min = 0.629, T max = 0.787
  • 11798 measured reflections
  • 5696 independent reflections
  • 3927 reflections with I > 2σ(I)
  • R int = 0.079
  • 2 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.208
  • S = 1.05
  • 5696 reflections
  • 367 parameters
  • 5 restraints
  • H-atom parameters constrained
  • Δρmax = 0.59 e Å−3
  • Δρmin = −0.61 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1993 [triangle]); cell refinement: CAD-4-PC; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065014/tk2230sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065014/tk2230Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to PRPPG-UFG and CNPq for financial support and LMGC acknowledges a fellowship from CNPq.

supplementary crystallographic information

Comment

We became interested in the syntheses and characterization of nickel(II) dithiocarbimates complexes due to their similarity with the dithiocarbamates, which have been used as molecular precursors for various nickel sulfides by MOCVD techniques (Hogarth, 2005). Some anionic nickel-dithiocarbimato complexes with general formula [Ni(RSO2N=CS2)2]2- (R = aryl or alkyl groups) have had their structures determined by X-ray diffraction techniques (Oliveira et al., 1997; Oliveira et al., 1999; Oliveira et al., 2003). However, only two of these complexes have the tetraphenylphosphonium as the counterion (Hummel & Korn, 1989) and only two were aliphatic (Oliveira et al., 1997; Franca et al., 2006). Variations in the counter-ions and in the R group can be important to modulate the volatility of these compounds favouring their application in MOCVD techniques. The title complex, (I), which is quite stable under ambient conditions, comprises a complex dianion and two tetraphenylphosphonium cations, with the formula (Ph4P)2(Ni(C8H17SO2N=CS2)2)2-, Figs 1 & 2.

The NiII ion is located in a twofold axis of symmetry being coordinated by four sulfur atoms from the dithiocarbimate dianion in a square planar coordination environment, Fig. 1 & Table 1. The Ni centre is located at 0.083 (1) Å out of the plane through the 4 S atoms. The resultant 4-membered Ni/S1/C1/S2 chelate ring shows a folded conformation [C&P Q(2) of 0.113 (3) Å; (Cremer & Pople, 1975)], giving the torsion angles S1i—Ni—S2—C1 and S2i—Ni—S1—C1 of 169.5 (2)° and -169.4 (2)°, respectively [symmetry code: (i) -x, y, -z + 1/2]. These values are outside the range from 174° to 180° observed in the related structures, with the smaller value found in (C14H10N2NiO4S6)2-.2(C24H20P)+ (Hummel & Korn, 1989), showing an higher distortion of the chelate ring in (I). This might be caused by the requirements of the packing of the counterion.

The conformation of (I) is stabilized by a weak intra-molecular H-bond of type C2–H2B···S2 (Table 2), which defines the torsion angle C1–N1–S3–C2 of -63.9 (4)°. Due to the flexibility of the long C chain, disorder was evident [see Experimental] so that the only bond distances determined reliably were C2—C3 [1.517 (7) Å] and C3—C4 [1.507 (7) Å]. The other C—C bonds were restrained to 1.54 Å and the chain conformation might be described, starting from the torsion angle about the C2–C3 bond, as: trans, gauche, trans, trans, cis, respectively. The actual torsion angles deviate from the ideal 0°, 60° and 180° due to repulsion due to the neighbouring molecules' C chains.

Experimental

The octanesulfonamide was prepared from octanesulfonyl chloride in a similar procedure as described elsewhere (Vogel, 1966). Potassium N-(octylsulfonyl)dithiocarbimate was prepared from the sulfonamide using procedures described in the literature for analogous compounds Complex (I) was prepared in 1:1 (10 ml) methanol:water mixture from NiCl2.6H2O (1.0 mmol), potassium N-(octylsulfonyl)dithiocarbimate dihydrate (1.0 mmol) and tetraphenylphosphonium bromide (2 mmol). The reaction mixture was stirred for 1 h at room temperature. The green solid obtained was filtered, washed with distilled water and dried under reduced pressure for 1 day. Suitable crystals of (I) were obtained by slow evaporation of the solvent water/methanol (1:1 v/v); m. pt. 427.5–429.1 K. Analysis found: C 62.43, H 5.81, N 2.42, Ni 4.59; C66H74N2NiO4P2S6 requires: C 62.30, H 5.86, N 2.20, Ni 4.61%. IR (most important bands, cm-1): 1398 ν(C=N); 1268 νasym(SO2); 1123 νsym(SO2); 936 νasym(CS2) and 381 ν(NiS).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.5 Ueq(C) for methyl-H atoms and Uiso(H) = 1.2 Ueq(C) for other atoms. The bond distances C4–C5, C5–C6, C6–C7, C7–C8 and C8–C9 were restrained to 1.54 Å. The atoms C5 to C9 are very disordered and any attempt to model this disorder over multiple sites was not reliable.

Figures

Fig. 1.
View of the dianion in (I) with 30% probability displacement ellipsoids showing atom labelling scheme. Symemtry operation (i): -x, y, -z + 1/2.
Fig. 2.
H-bonding in (I). The b axis is oriented upward and the a axis points to the right. Symmetry operation (iii): x+1/2, y - 1/2, z; (iv) -x+1, y, -z + 1/2. Only the hydrogen atoms participating in the interactions are shown.

Crystal data

(C24H20P)2[Ni(C9H17NO2S3)2]F000 = 2680
Mr = 1272.32Dx = 1.343 Mg m3
Monoclinic, C2/cMelting point: 428 K
Hall symbol: -C 2ycCu Kα radiation λ = 1.54180 Å
a = 29.113 (4) ÅCell parameters from 25 reflections
b = 10.425 (2) Åθ = 16.2–30.1º
c = 22.966 (3) ŵ = 3.17 mm1
β = 115.50 (1)ºT = 297 (2) K
V = 6291.3 (18) Å3Prism, dark-yellow
Z = 40.16 × 0.16 × 0.08 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.079
Radiation source: fine-focus sealed tubeθmax = 68º
Monochromator: graphiteθmin = 3.4º
T = 298(2) Kh = −34→34
non–profiled ω/2θ scansk = −12→12
Absorption correction: Gaussian(Spek, 2003)l = −18→27
Tmin = 0.629, Tmax = 0.7872 standard reflections
11798 measured reflections every 120 min
5696 independent reflections intensity decay: 1%
3927 reflections with I > 2σ(I)

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.061  w = 1/[σ2(Fo2) + (0.1159P)2 + 8.6294P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.208(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.59 e Å3
5696 reflectionsΔρmin = −0.61 e Å3
367 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5 restraintsExtinction coefficient: 0.00064 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni00.82980 (10)0.250.0545 (3)
S10.07020 (4)0.82179 (13)0.34078 (6)0.0654 (4)
S20.05891 (4)0.82194 (12)0.21372 (5)0.0622 (3)
S30.18146 (4)0.73175 (12)0.27711 (5)0.0574 (3)
O20.17880 (14)0.8302 (3)0.23259 (18)0.0748 (9)
O10.23151 (12)0.6954 (4)0.32300 (17)0.0849 (11)
N10.15016 (13)0.7668 (4)0.31917 (17)0.0590 (9)
C10.10265 (16)0.7992 (4)0.2937 (2)0.0555 (10)
C20.15171 (18)0.5925 (5)0.2332 (3)0.0697 (12)
H2A0.14980.52870.26280.084*
H2B0.11720.61360.20280.084*
C30.1798 (2)0.5359 (5)0.1968 (3)0.0793 (15)
H3A0.18390.60160.16950.095*
H3B0.21340.5090.22750.095*
C40.1522 (2)0.4229 (6)0.1558 (3)0.0872 (16)
H4A0.14250.36460.18160.105*
H4B0.17520.37730.14260.105*
C50.1043 (2)0.4607 (7)0.0953 (3)0.113 (2)
H5A0.11260.51960.06860.136*
H5B0.07920.50030.10690.136*
C60.0845 (4)0.3320 (8)0.0602 (5)0.186 (5)
H6A0.1090.29480.04680.224*
H6B0.07830.27160.08810.224*
C70.0349 (5)0.3651 (11)0.0013 (6)0.271 (9)
H7A0.04240.4276−0.02460.325*
H7B0.0120.40560.01640.325*
C80.0069 (5)0.2514 (11)−0.0422 (6)0.241 (8)
H8A−0.02620.2494−0.04140.289*
H8B0.00050.2784−0.08550.289*
C90.0228 (4)0.1100 (10)−0.0385 (5)0.191 (5)
H9A−0.00510.0606−0.06870.286*
H9B0.03210.07830.00440.286*
H9C0.05130.1029−0.04880.286*
P10.36685 (3)0.78525 (10)0.07711 (5)0.0464 (3)
C210.35663 (14)0.6605 (4)0.0188 (2)0.0511 (9)
C220.32109 (16)0.5653 (4)0.0083 (2)0.0635 (11)
H220.30550.55560.03590.076*
C230.3090 (2)0.4840 (5)−0.0440 (3)0.0807 (15)
H230.2850.4197−0.05140.097*
C240.3315 (2)0.4963 (6)−0.0847 (3)0.0868 (17)
H240.32260.4411−0.11970.104*
C250.3678 (2)0.5917 (6)−0.0740 (2)0.0788 (15)
H250.38340.6006−0.10160.095*
C260.38034 (18)0.6729 (5)−0.0218 (2)0.0664 (12)
H260.40480.7361−0.01380.08*
C310.43463 (14)0.8089 (4)0.12143 (19)0.0496 (9)
C320.46464 (16)0.7003 (4)0.1410 (2)0.0606 (11)
H320.45040.61940.12820.073*
C330.51645 (17)0.7136 (5)0.1802 (2)0.0703 (13)
H330.53690.6410.19390.084*
C340.53720 (17)0.8314 (5)0.1985 (3)0.0727 (14)
H340.57180.83870.22530.087*
C350.50824 (18)0.9399 (5)0.1782 (3)0.0746 (14)
H350.52311.02030.19060.09*
C360.45635 (16)0.9291 (4)0.1388 (2)0.0621 (11)
H360.43641.00230.12420.075*
C410.33391 (14)0.9246 (4)0.03316 (18)0.0474 (9)
C420.30224 (14)0.9135 (4)−0.03291 (19)0.0520 (9)
H420.2990.835−0.05350.062*
C430.27604 (15)1.0182 (4)−0.0673 (2)0.0556 (10)
H430.25461.0099−0.1110.067*
C440.28115 (16)1.1355 (5)−0.0377 (2)0.0618 (11)
H440.26381.2066−0.06150.074*
C450.31226 (17)1.1474 (4)0.0278 (2)0.0634 (11)
H450.31571.22660.04790.076*
C460.33794 (15)1.0433 (4)0.0630 (2)0.0546 (10)
H460.35821.05170.10710.065*
C110.34119 (14)0.7416 (4)0.13264 (19)0.0488 (9)
C120.36240 (16)0.6398 (4)0.1756 (2)0.0601 (11)
H120.38910.59260.17440.072*
C130.34362 (17)0.6096 (5)0.2196 (2)0.0639 (11)
H130.35820.54320.24880.077*
C140.30335 (18)0.6772 (5)0.2207 (2)0.0675 (13)
H140.29070.65490.25030.081*
C150.28174 (17)0.7762 (5)0.1792 (2)0.0649 (12)
H150.25470.82160.18060.078*
C160.30044 (16)0.8092 (4)0.1344 (2)0.0589 (11)
H160.28570.87630.10570.071*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni0.0469 (5)0.0568 (6)0.0611 (6)00.0243 (5)0
S10.0547 (6)0.0852 (9)0.0590 (7)0.0010 (5)0.0271 (5)−0.0024 (6)
S20.0493 (6)0.0812 (8)0.0548 (6)0.0051 (5)0.0213 (5)0.0067 (5)
S30.0461 (5)0.0688 (7)0.0559 (6)0.0026 (4)0.0206 (5)−0.0007 (5)
O20.088 (2)0.065 (2)0.087 (2)−0.0014 (17)0.054 (2)0.0053 (17)
O10.0511 (18)0.126 (3)0.069 (2)0.0167 (18)0.0180 (16)−0.006 (2)
N10.0489 (18)0.076 (2)0.0522 (19)0.0010 (17)0.0215 (15)0.0001 (18)
C10.052 (2)0.054 (2)0.059 (2)−0.0034 (18)0.0225 (19)−0.0018 (19)
C20.065 (3)0.066 (3)0.086 (3)0.000 (2)0.041 (3)−0.003 (3)
C30.075 (3)0.080 (4)0.097 (4)−0.006 (3)0.051 (3)−0.011 (3)
C40.103 (4)0.078 (4)0.104 (4)−0.005 (3)0.066 (4)−0.006 (3)
C50.102 (5)0.131 (6)0.117 (6)−0.024 (4)0.058 (5)−0.019 (5)
C60.151 (9)0.249 (14)0.147 (9)0.014 (9)0.054 (7)−0.079 (9)
C70.259 (18)0.29 (2)0.175 (12)−0.043 (14)0.007 (13)−0.060 (14)
C80.154 (10)0.306 (19)0.185 (12)0.055 (12)0.000 (9)−0.129 (13)
C90.182 (11)0.218 (14)0.141 (9)−0.021 (10)0.040 (8)0.020 (9)
P10.0402 (5)0.0469 (6)0.0489 (6)0.0006 (4)0.0164 (4)0.0005 (4)
C210.0459 (19)0.049 (2)0.055 (2)0.0075 (16)0.0184 (17)0.0009 (18)
C220.056 (2)0.051 (2)0.079 (3)−0.0062 (19)0.025 (2)−0.004 (2)
C230.070 (3)0.060 (3)0.094 (4)−0.005 (2)0.018 (3)−0.019 (3)
C240.087 (4)0.076 (4)0.083 (4)0.015 (3)0.022 (3)−0.028 (3)
C250.082 (3)0.090 (4)0.060 (3)0.011 (3)0.027 (3)−0.013 (3)
C260.062 (3)0.070 (3)0.067 (3)−0.001 (2)0.028 (2)−0.005 (2)
C310.0409 (19)0.055 (2)0.050 (2)−0.0031 (16)0.0177 (17)0.0007 (18)
C320.048 (2)0.061 (3)0.069 (3)0.0011 (19)0.021 (2)0.002 (2)
C330.047 (2)0.083 (3)0.078 (3)0.008 (2)0.023 (2)0.014 (3)
C340.043 (2)0.096 (4)0.073 (3)−0.010 (2)0.019 (2)0.007 (3)
C350.056 (2)0.076 (3)0.089 (4)−0.020 (2)0.028 (2)−0.002 (3)
C360.049 (2)0.062 (3)0.075 (3)−0.0077 (19)0.027 (2)0.003 (2)
C410.0435 (18)0.049 (2)0.047 (2)0.0023 (16)0.0167 (16)0.0017 (17)
C420.047 (2)0.052 (2)0.051 (2)−0.0022 (17)0.0163 (17)−0.0052 (18)
C430.052 (2)0.060 (3)0.050 (2)0.0046 (19)0.0181 (18)0.004 (2)
C440.058 (2)0.057 (3)0.066 (3)0.013 (2)0.023 (2)0.009 (2)
C450.068 (3)0.050 (2)0.067 (3)0.008 (2)0.024 (2)−0.007 (2)
C460.053 (2)0.054 (2)0.053 (2)0.0023 (18)0.0191 (18)−0.0032 (19)
C110.0417 (19)0.049 (2)0.051 (2)−0.0034 (16)0.0154 (17)−0.0023 (17)
C120.054 (2)0.057 (2)0.067 (3)0.0031 (19)0.023 (2)0.007 (2)
C130.061 (2)0.065 (3)0.063 (3)−0.008 (2)0.024 (2)0.007 (2)
C140.063 (3)0.084 (3)0.060 (3)−0.021 (2)0.030 (2)−0.008 (2)
C150.056 (2)0.075 (3)0.073 (3)0.002 (2)0.037 (2)−0.002 (3)
C160.048 (2)0.064 (3)0.063 (3)0.0029 (18)0.0214 (19)0.004 (2)

Geometric parameters (Å, °)

Ni—S12.2048 (12)C22—H220.93
Ni—S1i2.2048 (12)C23—C241.359 (8)
Ni—S2i2.2075 (11)C23—H230.93
Ni—S22.2075 (11)C24—C251.394 (8)
S1—C11.731 (4)C24—H240.93
S2—C11.743 (4)C25—C261.383 (7)
S3—O21.427 (3)C25—H250.93
S3—O11.434 (3)C26—H260.93
S3—N11.629 (4)C31—C321.381 (6)
S3—C21.766 (5)C31—C361.382 (6)
N1—C11.294 (5)C32—C331.391 (6)
C2—C31.517 (7)C32—H320.93
C2—H2A0.97C33—C341.353 (7)
C2—H2B0.97C33—H330.93
C3—C41.507 (7)C34—C351.367 (7)
C3—H3A0.97C34—H340.93
C3—H3B0.97C35—C361.392 (6)
C4—C51.537 (9)C35—H350.93
C4—H4A0.97C36—H360.93
C4—H4B0.97C41—C461.396 (6)
C5—C61.543 (11)C41—C421.400 (6)
C5—H5A0.97C42—C431.370 (6)
C5—H5B0.97C42—H420.93
C6—C71.534 (17)C43—C441.376 (6)
C6—H6A0.97C43—H430.93
C6—H6B0.97C44—C451.388 (7)
C7—C81.538 (17)C44—H440.93
C7—H7A0.97C45—C461.367 (6)
C7—H7B0.97C45—H450.93
C8—C91.536 (18)C46—H460.93
C8—H8A0.97C11—C161.395 (6)
C8—H8B0.97C11—C121.399 (6)
C9—H9A0.96C12—C131.377 (6)
C9—H9B0.96C12—H120.93
C9—H9C0.96C13—C141.377 (7)
P1—C111.792 (4)C13—H130.93
P1—C411.793 (4)C14—C151.362 (7)
P1—C211.796 (4)C14—H140.93
P1—C311.806 (4)C15—C161.399 (6)
C21—C221.378 (6)C15—H150.93
C21—C261.385 (6)C16—H160.93
C22—C231.386 (7)
S1—Ni—S1i175.66 (8)C22—C21—C26120.2 (4)
S1—Ni—S2i101.31 (4)C22—C21—P1121.6 (3)
S1i—Ni—S2i78.52 (4)C26—C21—P1117.6 (3)
S1—Ni—S278.52 (4)C21—C22—C23118.9 (5)
S1i—Ni—S2101.31 (4)C21—C22—H22120.5
S2i—Ni—S2175.75 (8)C23—C22—H22120.5
C1—S1—Ni87.00 (15)C24—C23—C22121.4 (5)
C1—S2—Ni86.61 (15)C24—C23—H23119.3
O2—S3—O1116.2 (2)C22—C23—H23119.3
O2—S3—N1113.0 (2)C23—C24—C25120.0 (5)
O1—S3—N1105.9 (2)C23—C24—H24120
O2—S3—C2108.7 (2)C25—C24—H24120
O1—S3—C2107.2 (2)C26—C25—C24119.1 (5)
N1—S3—C2105.1 (2)C26—C25—H25120.5
C1—N1—S3123.6 (3)C24—C25—H25120.5
N1—C1—S1121.2 (3)C25—C26—C21120.4 (5)
N1—C1—S2131.7 (4)C25—C26—H26119.8
S1—C1—S2107.0 (2)C21—C26—H26119.8
C3—C2—S3112.7 (3)C32—C31—C36120.1 (4)
C3—C2—H2A109.1C32—C31—P1117.1 (3)
S3—C2—H2A109.1C36—C31—P1122.6 (3)
C3—C2—H2B109.1C31—C32—C33119.2 (4)
S3—C2—H2B109.1C31—C32—H32120.4
H2A—C2—H2B107.8C33—C32—H32120.4
C4—C3—C2112.4 (4)C34—C33—C32120.4 (5)
C4—C3—H3A109.1C34—C33—H33119.8
C2—C3—H3A109.1C32—C33—H33119.8
C4—C3—H3B109.1C33—C34—C35121.2 (4)
C2—C3—H3B109.1C33—C34—H34119.4
H3A—C3—H3B107.9C35—C34—H34119.4
C3—C4—C5113.4 (5)C34—C35—C36119.5 (5)
C3—C4—H4A108.9C34—C35—H35120.3
C5—C4—H4A108.9C36—C35—H35120.3
C3—C4—H4B108.9C31—C36—C35119.6 (4)
C5—C4—H4B108.9C31—C36—H36120.2
H4A—C4—H4B107.7C35—C36—H36120.2
C4—C5—C6103.8 (6)C46—C41—C42118.8 (4)
C4—C5—H5A111C46—C41—P1122.1 (3)
C6—C5—H5A111C42—C41—P1119.1 (3)
C4—C5—H5B111C43—C42—C41120.2 (4)
C6—C5—H5B111C43—C42—H42119.9
H5A—C5—H5B109C41—C42—H42119.9
C7—C6—C5105.2 (7)C42—C43—C44120.5 (4)
C7—C6—H6A110.7C42—C43—H43119.7
C5—C6—H6A110.7C44—C43—H43119.7
C7—C6—H6B110.7C43—C44—C45119.7 (4)
C5—C6—H6B110.7C43—C44—H44120.1
H6A—C6—H6B108.8C45—C44—H44120.1
C6—C7—C8115.7 (9)C46—C45—C44120.4 (4)
C6—C7—H7A108.4C46—C45—H45119.8
C8—C7—H7A108.4C44—C45—H45119.8
C6—C7—H7B108.4C45—C46—C41120.3 (4)
C8—C7—H7B108.4C45—C46—H46119.8
H7A—C7—H7B107.4C41—C46—H46119.8
C9—C8—C7129.8 (11)C16—C11—C12119.1 (4)
C9—C8—H8A104.8C16—C11—P1120.8 (3)
C7—C8—H8A104.8C12—C11—P1120.1 (3)
C9—C8—H8B104.8C13—C12—C11119.8 (4)
C7—C8—H8B104.8C13—C12—H12120.1
H8A—C8—H8B105.8C11—C12—H12120.1
C8—C9—H9A109.5C12—C13—C14120.5 (5)
C8—C9—H9B109.5C12—C13—H13119.8
H9A—C9—H9B109.5C14—C13—H13119.8
C8—C9—H9C109.5C15—C14—C13121.0 (4)
H9A—C9—H9C109.5C15—C14—H14119.5
H9B—C9—H9C109.5C13—C14—H14119.5
C11—P1—C41108.68 (18)C14—C15—C16119.5 (4)
C11—P1—C21111.12 (19)C14—C15—H15120.2
C41—P1—C21106.86 (19)C16—C15—H15120.2
C11—P1—C31108.82 (19)C11—C16—C15120.1 (4)
C41—P1—C31113.36 (18)C11—C16—H16119.9
C21—P1—C31108.01 (18)C15—C16—H16119.9
S2i—Ni—S1—C1169.45 (15)C11—P1—C31—C36−99.4 (4)
S2—Ni—S1—C1−6.21 (15)C41—P1—C31—C3621.7 (4)
S1—Ni—S2—C16.17 (15)C21—P1—C31—C36139.9 (4)
S1i—Ni—S2—C1−169.41 (15)C36—C31—C32—C332.3 (7)
O2—S3—N1—C154.5 (5)P1—C31—C32—C33−174.3 (4)
O1—S3—N1—C1−177.2 (4)C31—C32—C33—C34−0.4 (8)
C2—S3—N1—C1−63.9 (4)C32—C33—C34—C35−1.1 (8)
S3—N1—C1—S1174.3 (2)C33—C34—C35—C360.9 (8)
S3—N1—C1—S2−2.7 (7)C32—C31—C36—C35−2.5 (7)
Ni—S1—C1—N1−169.6 (4)P1—C31—C36—C35173.9 (4)
Ni—S1—C1—S28.07 (19)C34—C35—C36—C310.9 (8)
Ni—S2—C1—N1169.3 (5)C11—P1—C41—C4666.4 (4)
Ni—S2—C1—S1−8.06 (19)C21—P1—C41—C46−173.6 (3)
O2—S3—C2—C365.5 (4)C31—P1—C41—C46−54.8 (4)
O1—S3—C2—C3−60.8 (5)C11—P1—C41—C42−112.2 (3)
N1—S3—C2—C3−173.2 (4)C21—P1—C41—C427.8 (4)
S3—C2—C3—C4−175.9 (4)C31—P1—C41—C42126.7 (3)
C2—C3—C4—C573.1 (6)C46—C41—C42—C430.3 (6)
C3—C4—C5—C6177.4 (6)P1—C41—C42—C43179.0 (3)
C4—C5—C6—C7176.9 (10)C41—C42—C43—C441.1 (6)
C5—C6—C7—C8−179.6 (12)C42—C43—C44—C45−1.4 (7)
C6—C7—C8—C9−5(3)C43—C44—C45—C460.2 (7)
C11—P1—C21—C2217.5 (4)C44—C45—C46—C411.2 (7)
C41—P1—C21—C22−100.9 (4)C42—C41—C46—C45−1.5 (6)
C31—P1—C21—C22136.8 (3)P1—C41—C46—C45179.9 (3)
C11—P1—C21—C26−171.4 (3)C41—P1—C11—C162.8 (4)
C41—P1—C21—C2670.1 (4)C21—P1—C11—C16−114.5 (4)
C31—P1—C21—C26−52.1 (4)C31—P1—C11—C16126.7 (3)
C26—C21—C22—C23−1.1 (7)C41—P1—C11—C12−176.3 (3)
P1—C21—C22—C23169.7 (4)C21—P1—C11—C1266.4 (4)
C21—C22—C23—C240.2 (7)C31—P1—C11—C12−52.4 (4)
C22—C23—C24—C250.4 (8)C16—C11—C12—C13−1.4 (6)
C23—C24—C25—C26−0.1 (8)P1—C11—C12—C13177.8 (3)
C24—C25—C26—C21−0.8 (8)C11—C12—C13—C141.4 (7)
C22—C21—C26—C251.4 (7)C12—C13—C14—C15−1.0 (7)
P1—C21—C26—C25−169.7 (4)C13—C14—C15—C160.5 (7)
C11—P1—C31—C3277.1 (4)C12—C11—C16—C150.9 (6)
C41—P1—C31—C32−161.9 (3)P1—C11—C16—C15−178.3 (3)
C21—P1—C31—C32−43.6 (4)C14—C15—C16—C11−0.5 (7)

Symmetry codes: (i) −x, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···S20.972.833.490 (5)126
C13—H13···O2ii0.932.583.276 (6)132

Symmetry codes: (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2230).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Enraf–Nonius (1993). CAD-4-PC Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Franca, E. F., Oliveira, M. R. L., Guilardi, S., Andrade, R. P., Lindemann, R. H., Amim, A. Jr, Ellena, J., De Bellis, V. M. & Rubinger, M. M. M. (2006). Polyhedron, 25, 2119–2126.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Hogarth, G. A. (2005). Prog. Inorg. Chem.53, 71–561.
  • Hummel, H. U. & Korn, U. Z. (1989). Z. Naturforsch. B Chem. Sci.44, 29–34.
  • Oliveira, M. R. L., De Bellis, V. M. & Fernandes, N. G. (1997). Struct. Chem.8, 205–209.
  • Oliveira, M. R. L., Diniz, R., De Bellis, V. M. & Fernandes, N. G. (2003). Polyhedron, 22, 1561–1566.
  • Oliveira, M. R. L., Graúdo, J. E. J. C., Speziali, N. L. & De Bellis, V. M. (1999). Struct. Chem.10, 41–45.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vogel, A. I. (1966). A Textbook of Practical Organic Chemistry Including Qualitative Organic Analysis, p. 543. London: Logmans, Green and Co. Ltd.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography