PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m147.
Published online 2007 December 12. doi:  10.1107/S1600536807065725
PMCID: PMC2915090

Redetermination of poly[aquadi-μ3-oxy­diacetato-dicopper(II)]

Abstract

The title complex, [Cu2(C4H4O5)2(H2O)]n, has a two-dimensional layer structure. The Cu atom has a distorted octa­hedral (CuO6) environment and is coordinated by four carboxyl­ate group O atoms from three different oxydiacetate ligands in a planar arrangement and one half-occupancy water mol­ecule and an ether O atom in the axial positions. In the crystal structure, weak intra- and inter­molecular O—H(...)O hydrogen bonds help to stabilize the crystal packing. The structure has already been published [Whitlow & Davey (1975 [triangle]). J. Chem. Soc. Dalton. Trans. pp. 1228–1232]; this redetermination reports the structure with higher precision.

Related literature

For related literature, see: Whitlow & Davey (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m147-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C4H4O5)2(H2O)]
  • M r = 409.24
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m147-efi6.jpg
  • a = 9.2695 (11) Å
  • b = 14.3052 (2) Å
  • c = 9.2715 (11) Å
  • V = 1229.4 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 3.52 mm−1
  • T = 294 (2) K
  • 0.16 × 0.10 × 0.06 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (Jacobson, 1998 [triangle]) T min = 0.660, T max = 0.812
  • 1544 measured reflections
  • 1477 independent reflections
  • 1385 reflections with I > 2σ(I)
  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.085
  • S = 1.09
  • 1477 reflections
  • 102 parameters
  • H-atom parameters constrained
  • Δρmax = 0.73 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Bruker, 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807065725/bq2052sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065725/bq2052Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Tianjin Polytechnic University for financial support.

supplementary crystallographic information

Comment

The structure of the title complex, (I), was determined some years ago [Whitlow & Davey, 1975)] using diffraction data collected at ambient temperature, the determination gave higher R values (R =0.088) and Z=8. The information of the structure was not found at the database of CCDC. Complex, (I), has been obtained as a by-product of study of heterobimetallic complexes involving Ba(NO3)2, Cu(NO3)2 and oxydiacetic acid, using Na2CO3 as base. We have taken this opportunity to redetermine the structure of (I) at 294 (2) K, leading to significantly improved precision.

The asymmetric unit in the structure of (I) comprises one Cu atom, one complete oxydiacetate dianion and half a water molecule, and is shown in Fig. 1 in a symmetry-expanded view, which displays the full coordination of the Cu atom. Selected geometric parameters are given in Table 1. The Cu atom has octahedral coordination, with O1, O5, O2ii and O4i of three nonequivalent oxydiacetate dianions in a planar arrangement, and O3 and O6 atoms from one ether oxygen and half a water molecules in a trans conformation. Thus, the coordination octahedra of the Cu atoms can be visualized as having an elongated axial distortion.

In the structure of (I), each Cu atom is bonded to an oxydiacetate ligand via the O1 and O5 atoms of carboxylate groups and the ether oxygen O3 atom, each oxydiacetate ligand connect with other two Cu atoms via the O2 and O4 atom as a monodentate bonding mode and a bridging bonding mode, respectively. These result in the Cu1···Cu1 separations are 4.8666 (9)Å and 4.8501 (10) Å, respectively, and complete a two-dimensional layer connectivity of the structure parallel to ac plane. A number of weak intra- and intermolecular O–H···O hydrogen bonds interactions (see Table 2) further stabilize the two-dimensional framework within this layer. A packing diagram for the structure of (I) is shown in Fig. 2.

Experimental

A mixture of 20 ml aqueous solution of sodium carbonate anhydrous (0.43 g, 4 mmol) and oxydiacetic acid (0.54 g, 4.0 mmol) was added dropwise into a solution of cupric nitrate (0.49 g, 2 mmol) and barium nitrate (0.52 g, 2 mmol) in 20 ml of distillated water under stirring at the room temperature for 20 min. After filtration, slow evaporation the filtrate over a period of two week at room temperature provided the crystals of (I).

Refinement

The H atoms of the water molecule were found in difference Fourier maps and during refinement were fixed at an O–H distance of 0.85 Å, and with Uiso(H) = 1.2 Ueq(O). The H atoms of C–H groups were placed geometrically and during refinement were treated using a riding model, with C–H = 0.97 Å, and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
A view of the structure of (I), showing the atom-numbering Scheme; displacement ellipsoids were drawn at the 30% probability level. Symmetry codes (i) -x + 3/2, -y + 1/2, z + 1/2; (ii) x + 1/2, -y + 1/2, -z + 1.
Fig. 2.
Packing diagram showing hydrogen bonds interactions, viewed down the b axis.

Crystal data

[Cu2(C4H4O5)2(H2O)]F000 = 816
Mr = 409.24Dx = 2.211 Mg m3
Orthorhombic, PbcnMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1544 reflections
a = 9.2695 (11) Åθ = 2.6–27.9º
b = 14.3052 (2) ŵ = 3.52 mm1
c = 9.2715 (11) ÅT = 294 (2) K
V = 1229.4 (2) Å3Plate, blue
Z = 40.16 × 0.10 × 0.06 mm

Data collection

Rigaku Saturn diffractometer1477 independent reflections
Radiation source: fine-focus sealed tube1385 reflections with I > 2σ(I)
Monochromator: confocalRint = 0.013
Detector resolution: 28.5714 pixels mm-1θmax = 27.9º
T = 294(2) Kθmin = 1.4º
ω scansh = −1→12
Absorption correction: multi-scan(Jacobson, 1998)k = −3→18
Tmin = 0.660, Tmax = 0.812l = −1→12
1544 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039  w = 1/[σ2(Fo2) + (0.0397P)2 + 0.8539P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.73 e Å3
1477 reflectionsΔρmin = −0.54 e Å3
102 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (11)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.72930 (5)0.20200 (3)0.46964 (6)0.02384 (17)
O10.5403 (3)0.2600 (2)0.4973 (5)0.0304 (8)
O20.3991 (3)0.3753 (2)0.5700 (4)0.0287 (7)
O30.7808 (3)0.37024 (17)0.5203 (3)0.0227 (5)
O40.8062 (4)0.3780 (3)0.1361 (3)0.0314 (7)
O50.7509 (4)0.2607 (3)0.2807 (4)0.0293 (8)
C10.5227 (4)0.3416 (3)0.5428 (5)0.0227 (9)
C20.6489 (4)0.4050 (3)0.5749 (5)0.0245 (9)
H2A0.63050.46610.53320.029*
H2B0.65720.41280.67850.029*
C30.8234 (5)0.4079 (3)0.3855 (5)0.0301 (11)
H3A0.92630.42000.38740.036*
H3B0.77460.46720.37090.036*
C40.7895 (5)0.3437 (3)0.2599 (5)0.0242 (9)
O60.5441 (8)0.1079 (4)0.2898 (10)0.0489 (19)0.50
H6A0.54270.15260.35030.059*0.50
H6B0.58100.13310.21540.059*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0263 (3)0.0194 (2)0.0258 (3)0.0012 (2)0.00097 (18)−0.0001 (3)
O10.0215 (14)0.0259 (19)0.044 (2)−0.0007 (11)−0.0010 (19)−0.0069 (15)
O20.0237 (15)0.0221 (17)0.040 (2)0.0032 (12)0.0019 (12)0.0019 (15)
O30.0205 (12)0.0265 (13)0.0212 (14)0.0001 (10)0.0026 (10)−0.0004 (12)
O40.0426 (18)0.0308 (19)0.0207 (16)−0.0011 (15)0.0001 (13)−0.0009 (13)
O50.0404 (18)0.0229 (19)0.0246 (14)−0.0042 (13)−0.0009 (17)−0.0016 (13)
C10.023 (2)0.024 (2)0.022 (2)0.0011 (16)−0.0022 (15)0.006 (2)
C20.025 (2)0.022 (2)0.026 (3)0.0014 (16)0.0015 (16)−0.0053 (18)
C30.034 (2)0.030 (2)0.026 (3)−0.0036 (19)0.003 (2)0.0000 (18)
C40.020 (2)0.028 (2)0.025 (2)0.0027 (18)−0.0024 (16)−0.0006 (17)
O60.055 (6)0.027 (3)0.064 (7)0.005 (3)0.021 (3)0.003 (4)

Geometric parameters (Å, °)

Cu1—O4i1.950 (3)O4—Cu1iv1.950 (3)
Cu1—O51.953 (3)O5—C41.255 (5)
Cu1—O11.955 (3)C1—C21.510 (6)
Cu1—O2ii1.958 (3)C2—H2A0.9700
Cu1—O32.498 (3)C2—H2B0.9700
Cu1—O62.746 (8)C3—C41.516 (6)
O1—C11.252 (5)C3—H3A0.9700
O2—C11.268 (5)C3—H3B0.9700
O2—Cu1iii1.958 (3)O6—O6v1.101 (13)
O3—C21.414 (4)O6—H6A0.8504
O3—C31.417 (5)O6—H6B0.8505
O4—C41.258 (5)
O4i—Cu1—O5168.50 (15)O3—C2—H2A109.0
O4i—Cu1—O189.68 (15)C1—C2—H2A109.0
O5—Cu1—O191.52 (11)O3—C2—H2B109.0
O4i—Cu1—O2ii87.29 (12)C1—C2—H2B109.0
O5—Cu1—O2ii89.56 (14)H2A—C2—H2B107.8
O1—Cu1—O2ii169.87 (14)O3—C3—C4112.9 (4)
O3—Cu1—O6134.91 (15)O3—C3—H3A109.0
O1—Cu1—O374.80 (11)C4—C3—H3A109.0
O1—Cu1—O674.19 (19)O3—C3—H3B109.0
C1—O1—Cu1123.9 (3)C4—C3—H3B109.0
C1—O2—Cu1iii118.4 (3)H3A—C3—H3B107.8
C2—O3—C3115.0 (3)O5—C4—O4123.0 (4)
C4—O4—Cu1iv118.2 (3)O5—C4—C3121.0 (4)
C4—O5—Cu1125.0 (3)O4—C4—C3116.1 (4)
O1—C1—O2122.6 (4)O6v—O6—H6A115.5
O1—C1—C2121.7 (4)O6v—O6—H6B75.8
O2—C1—C2115.6 (4)H6A—O6—H6B102.9
O3—C2—C1112.8 (3)
O4i—Cu1—O1—C1108.4 (4)C3—O3—C2—C197.3 (4)
O5—Cu1—O1—C1−83.1 (4)O1—C1—C2—O312.5 (7)
O2ii—Cu1—O1—C1−179.1 (7)O2—C1—C2—O3−170.0 (4)
O4i—Cu1—O5—C4176.0 (6)C2—O3—C3—C4−100.0 (4)
O1—Cu1—O5—C480.1 (4)Cu1—O5—C4—O4177.8 (3)
O2ii—Cu1—O5—C4−110.0 (4)Cu1—O5—C4—C3−0.3 (7)
Cu1—O1—C1—O2−174.6 (3)Cu1iv—O4—C4—O5−0.2 (6)
Cu1—O1—C1—C22.7 (7)Cu1iv—O4—C4—C3178.0 (3)
Cu1iii—O2—C1—O1−2.9 (7)O3—C3—C4—O5−11.2 (6)
Cu1iii—O2—C1—C2179.6 (3)O3—C3—C4—O4170.6 (4)

Symmetry codes: (i) −x+3/2, −y+1/2, z+1/2; (ii) x+1/2, −y+1/2, −z+1; (iii) x−1/2, −y+1/2, −z+1; (iv) −x+3/2, −y+1/2, z−1/2; (v) −x+1, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6B···O50.852.492.909 (8)112
O6—H6B···O3iv0.852.222.996 (11)152
O6—H6A···O10.852.052.905 (8)180

Symmetry codes: (iv) −x+3/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2052).

References

  • Bruker (2001). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2005). CrystalClear Version 1.3.6. Rigaku/MSC, The Woodlands, Texas, USA.
  • Whitlow, S. H. & Davey, G. (1975). J. Chem. Soc. Dalton Trans. pp. 1228–1232.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography