PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m146.
Published online 2007 December 12. doi:  10.1107/S1600536807064161
PMCID: PMC2915089

N-Methyl­piperazinediium penta­chloridoanti­monate(III) monohydrate

Abstract

The asymmetric unit of the title compound, (C5H14N2)[SbCl5]·H2O, consists of an N-methyl­piperazinediium cation, a penta­chloridoanti­monate anion with the SbIII ion in a slightly distorted square-pyramidal coordination environment, and one solvent water mol­ecule. The crystal structure is stabilized by inter­molecular N—H(...)Cl, O—H(...)Cl and N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Baker & Williams (1978 [triangle]); Bujak & Zaleski (1999 [triangle]); Clemente & Marzotto (2003 [triangle]); Feng et al. (2007 [triangle]); Knodler et al. (1988 [triangle]); Linden et al. (1999 [triangle]); Marsh (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m146-scheme1.jpg

Experimental

Crystal data

  • (C5H14N2)[SbCl5]·H2O
  • M r = 419.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m146-efi1.jpg
  • a = 9.600 (4) Å
  • b = 7.934 (3) Å
  • c = 19.966 (6) Å
  • β = 106.765 (16)°
  • V = 1456.1 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.79 mm−1
  • T = 273 (2) K
  • 0.33 × 0.18 × 0.14 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.460, T max = 0.696
  • 7167 measured reflections
  • 2577 independent reflections
  • 2400 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.024
  • wR(F 2) = 0.054
  • S = 1.07
  • 2577 reflections
  • 129 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807064161/lh2556sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064161/lh2556Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Halogenoantimonates constitute a group of salts in which a number of compounds have been reported (e.g. Feng et al., 2007; Bujak & Zaleski, 1999; Knodler et al., 1988; Baker & Williams, 1978 and see: Clemente & Marzotto (2003); Marsh et al. (1995) for corrected space groups of some of these types of compounds). In our laboratory, a compound containing pentachloridoantimonate has been synthesized, its crystal structure is reported herein.

As shown in Fig. 1, an ion pair consisting of N-methylpiperazinium and (SbCl5)2+, and one water molecule comprise the formula unit. In the selected asymmetric unit The SbCl5 anion is linked to N-methylpiperazinium and the water molecule by N—H···Cl and O—H···Cl hydrogen bonds.

The Sb atom is coordinated by five Cl atoms, with Sb—Cl distances ranging from 2.4110 (10) to 2.9112 (11) Å. The Sb—Cl distances are slightly different to the values of 2.499 (4)–2.768 (4)Å reported by Bujak & Zaleski (1999). In the title compound the difference between the longest bond (Sb1—Cl5) and shortest bond (Sb1—Cl2) is ca 0.50 Å. The slight deformation of the square-pyramidal coordination environment may be attributed to the presence of relatively strong N—H···Cl hydrogen bonds. The atoms Cl1/Cl3/Cl4/Cl5 form the basal plane, while atom Cl2 is the apical atom. The structure of the anion is similar to that of the (TiCl5)2- anion (Linden et al., 1999).

The six-membered piperazine ring is in chair conformation. The crystal structure is stabilized by N—H···Cl, O—H···Cl and N—H···O hydrogen bonds, and by weak C—H···Cl and C—H···O hydrogen bonds (Fig. 2).

Experimental

SbCl3, N-methylpiperazine and 30% aqueous HCl in a molar ratio of 1:1:1 were mixed and dissolved in sufficient ethanol by heating to 373 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, crystals of the title compound were fromed, collected and washed with dilute aqueous HCl.

Refinement

H atoms were included in calculated positions with O—H = 0.82, N—H = 0.90 - 0.91 and C—H = 0.96–0.97 Å and included in the riding-model approximation with Uiso(H) = 1.2Ueq(C,N,O) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The asymmetric unit of the title compound with atom labels, and 30% probability displacement ellipsoids. Hydrogen bonds are illustrated as dashed lines.
Fig. 2.
The packing viewed approximately along the b axis. Hydrogen bonds are drawn as dashed lines.

Crystal data

(C5H14N2)[SbCl5]·H2OF000 = 816
Mr = 419.20Dx = 1.912 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3256 reflections
a = 9.600 (4) Åθ = 2.1–25.0º
b = 7.934 (3) ŵ = 2.79 mm1
c = 19.966 (6) ÅT = 273 (2) K
β = 106.765 (16)ºBlock, brown
V = 1456.1 (9) Å30.33 × 0.18 × 0.14 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer2577 independent reflections
Radiation source: fine-focus sealed tube2400 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.021
T = 273(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −11→11
Tmin = 0.460, Tmax = 0.696k = −9→9
7167 measured reflectionsl = −16→23

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024  w = 1/[σ2(Fo2) + (0.0213P)2 + 0.8984P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.054(Δ/σ)max = 0.002
S = 1.07Δρmax = 0.35 e Å3
2577 reflectionsΔρmin = −0.48 e Å3
129 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0050 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6846 (3)1.0018 (3)0.96651 (12)0.0597 (6)
H1F0.68111.07700.93780.072*
H1G0.72460.91490.96070.072*
N10.8129 (3)0.3813 (3)0.60274 (12)0.0430 (6)
H1A0.85800.28140.60420.052*
H1B0.76640.40450.55770.052*
N20.7418 (2)0.6714 (3)0.67442 (12)0.0386 (5)
H20.79030.64270.71920.046*
C10.6710 (4)0.8384 (4)0.67596 (18)0.0546 (8)
H1C0.74330.91960.69880.082*
H1D0.59990.82840.70110.082*
H1E0.62420.87470.62900.082*
C20.9227 (3)0.5143 (4)0.63140 (17)0.0432 (7)
H2A0.98790.52390.60240.052*
H2B0.98000.48350.67830.052*
C30.8497 (3)0.6806 (4)0.63348 (16)0.0434 (7)
H3A0.92300.76450.65440.052*
H3B0.80060.71630.58610.052*
C40.6329 (3)0.5373 (4)0.64511 (18)0.0490 (8)
H4A0.57650.56840.59810.059*
H4B0.56650.52780.67350.059*
C50.7048 (3)0.3696 (4)0.64308 (18)0.0524 (8)
H5A0.75330.33310.69040.063*
H5B0.63150.28640.62160.063*
Sb10.82184 (2)0.48123 (2)0.906548 (10)0.03847 (9)
Cl10.71738 (9)0.22687 (12)0.83017 (4)0.0586 (2)
Cl20.63328 (9)0.65958 (12)0.83543 (5)0.0628 (2)
Cl30.67147 (9)0.43460 (13)0.98606 (5)0.0607 (2)
Cl40.95679 (9)0.75059 (10)0.98509 (4)0.0497 (2)
Cl50.98660 (8)0.58815 (10)0.81238 (4)0.04343 (18)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0592 (15)0.0667 (16)0.0495 (14)0.0137 (11)0.0096 (12)0.0028 (11)
N10.0458 (14)0.0450 (14)0.0374 (13)0.0000 (11)0.0106 (11)−0.0041 (11)
N20.0367 (13)0.0475 (14)0.0324 (13)0.0034 (11)0.0114 (10)0.0027 (11)
C10.053 (2)0.0537 (19)0.061 (2)0.0157 (16)0.0214 (17)0.0051 (17)
C20.0366 (16)0.0524 (18)0.0428 (18)−0.0024 (13)0.0150 (14)−0.0043 (14)
C30.0448 (17)0.0477 (17)0.0432 (17)−0.0071 (14)0.0213 (14)−0.0033 (14)
C40.0324 (15)0.063 (2)0.052 (2)−0.0043 (14)0.0140 (14)−0.0037 (16)
C50.0505 (19)0.0527 (19)0.059 (2)−0.0117 (15)0.0233 (16)−0.0005 (17)
Sb10.03744 (13)0.04726 (14)0.03172 (13)0.00487 (8)0.01155 (9)0.00274 (8)
Cl10.0575 (5)0.0664 (5)0.0521 (5)−0.0089 (4)0.0163 (4)−0.0123 (4)
Cl20.0541 (5)0.0779 (6)0.0553 (5)0.0234 (4)0.0140 (4)0.0178 (4)
Cl30.0572 (5)0.0802 (6)0.0548 (5)0.0108 (4)0.0323 (4)0.0108 (5)
Cl40.0565 (5)0.0523 (4)0.0457 (4)0.0030 (4)0.0232 (4)−0.0021 (4)
Cl50.0432 (4)0.0520 (4)0.0346 (4)0.0007 (3)0.0104 (3)−0.0005 (3)

Geometric parameters (Å, °)

O1—H1F0.8219C2—H2A0.9700
O1—H1G0.8128C2—H2B0.9700
N1—C21.485 (4)C3—H3A0.9700
N1—C51.488 (4)C3—H3B0.9700
N1—H1A0.9000C4—C51.505 (4)
N1—H1B0.9000C4—H4A0.9700
N2—C41.488 (4)C4—H4B0.9700
N2—C11.493 (4)C5—H5A0.9700
N2—C31.496 (3)C5—H5B0.9700
N2—H20.9100Sb1—Cl22.4110 (10)
C1—H1C0.9600Sb1—Cl32.4623 (10)
C1—H1D0.9600Sb1—Cl12.5538 (11)
C1—H1E0.9600Sb1—Cl42.7446 (11)
C2—C31.500 (4)Sb1—Cl52.9112 (11)
H1F—O1—H1G116.3C2—C3—H3A109.2
C2—N1—C5111.3 (2)N2—C3—H3B109.2
C2—N1—H1A109.4C2—C3—H3B109.2
C5—N1—H1A109.4H3A—C3—H3B107.9
C2—N1—H1B109.4N2—C4—C5111.5 (2)
C5—N1—H1B109.4N2—C4—H4A109.3
H1A—N1—H1B108.0C5—C4—H4A109.3
C4—N2—C1111.7 (2)N2—C4—H4B109.3
C4—N2—C3109.8 (2)C5—C4—H4B109.3
C1—N2—C3111.1 (2)H4A—C4—H4B108.0
C4—N2—H2108.0N1—C5—C4110.9 (3)
C1—N2—H2108.0N1—C5—H5A109.5
C3—N2—H2108.0C4—C5—H5A109.5
N2—C1—H1C109.5N1—C5—H5B109.5
N2—C1—H1D109.5C4—C5—H5B109.5
H1C—C1—H1D109.5H5A—C5—H5B108.0
N2—C1—H1E109.5Cl2—Sb1—Cl389.29 (4)
H1C—C1—H1E109.5Cl2—Sb1—Cl190.76 (4)
H1D—C1—H1E109.5Cl3—Sb1—Cl193.67 (4)
N1—C2—C3110.5 (2)Cl2—Sb1—Cl491.71 (4)
N1—C2—H2A109.5Cl3—Sb1—Cl490.95 (4)
C3—C2—H2A109.5Cl1—Sb1—Cl4174.79 (3)
N1—C2—H2B109.5Cl5—Sb1—Cl192.15 (4)
C3—C2—H2B109.5Cl5—Sb1—Cl284.50 (4)
H2A—C2—H2B108.1Cl5—Sb1—Cl3171.54 (4)
N2—C3—C2112.0 (2)Cl5—Sb1—Cl483.52 (4)
N2—C3—H3A109.2
C5—N1—C2—C3−55.7 (3)C1—N2—C4—C5179.5 (3)
C4—N2—C3—C2−56.1 (3)C3—N2—C4—C555.8 (3)
C1—N2—C3—C2179.8 (3)C2—N1—C5—C455.9 (3)
N1—C2—C3—N256.2 (3)N2—C4—C5—N1−56.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1F···Cl1i0.822.573.346 (4)159
O1—H1G···Cl40.822.513.223 (5)147
N1—H1A···Cl5ii0.902.433.179 (4)141
N1—H1B···O1iii0.901.912.801 (5)168
N2—H2···Cl50.912.283.133 (5)157

Symmetry codes: (i) x, y+1, z; (ii) −x+2, y−1/2, −z+3/2; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2556).

References

  • Baker, W. A. & Williams, D. E. (1978). Acta Cryst. B34, 1111–1116.
  • Bruker (2000). SMART (Version 5.618), SADABS (Version 2.05), SAINT (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bujak, M. & Zaleski, J. (1999). Acta Cryst. C55, 1775–1778.
  • Clemente, D. A. & Marzotto, A. (2003). Acta Cryst. B59, 43–50. [PubMed]
  • Feng, W.-J., Wang, H.-B., Ma, X.-J., Li, H.-Y. & Jin, Z.-M. (2007). Acta Cryst. E63, m1786–m1787.
  • Knodler, R., Ensinger, U., Schwarz, W. & Schmidt, A. (1988). Z. Anorg. Allg. Chem.557, 208–218.
  • Linden, A., Nugent, K. W., Petridis, A. & James, B. D. (1999). Inorg. Chim. Acta, 285, 122–128.
  • Marsh, R. E. (1995). Acta Cryst. B51, 897–907.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography