PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m143.
Published online 2007 December 12. doi:  10.1107/S1600536807046922
PMCID: PMC2915087

catena-Poly[[aqua­copper(II)]-μ-[(S)-N-(2-hydroxy­benz­yl)-l-aspartato]]

Abstract

The title compound, [Cu(C11H11NO5)(H2O)]n, was obtained by the reaction of Cu(NO3)2 and the homochiral organic ligand (S)-N-(2-hydroxy­benz­yl)-l-aspartic acid (S-H3sasp). The CuII ion has a distorted square-pyramidal geometry and is coordinated by one N atom and three O atoms from the organic ligand and one O atom from a water mol­ecule. The carboxyl O atoms of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain. Inter­molecular hydrogen bonds link these chains into a two-dimensional arrangement.

Related literature

For related literature, see: Yang et al. (2004 [triangle]); Lü et al. (2005 [triangle]); Sreenivasulu & Vittal (2004 [triangle]); Sreenivasulu et al. (2005 [triangle]); Wang et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m143-scheme1.jpg

Experimental

Crystal data

  • [Cu(C11H11NO5)(H2O)]
  • M r = 318.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m143-efi1.jpg
  • a = 5.9107 (13) Å
  • b = 8.826 (2) Å
  • c = 11.903 (3) Å
  • β = 93.787 (19)°
  • V = 619.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.79 mm−1
  • T = 293 (2) K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.690, T max = 0.703
  • 6500 measured reflections
  • 2934 independent reflections
  • 2532 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.079
  • S = 0.99
  • 2934 reflections
  • 172 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.48 e Å−3
  • Δρmin = −0.41 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1355 Friedel pairs
  • Flack parameter: 0.064 (16)

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Sheldrick, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807046922/pk2047sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807046922/pk2047Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the National Natural Science Foundation of China (Project 20671019) for financial support.

supplementary crystallographic information

Comment

In the past several years, considerable attention has been paid to the design and construction of chiral supramolecular architecture owing to their potential applications in enantioselective synthesis, asymmetric catalysis, magnetism and nonlinear optical materials (Lü et al., 2005). Among these supramolecular structures, one-dimensional coordination polymers appear to dominate the literature, involving linear, zigzag and helical polymers (Wang et al., 2006). In addition, the one-dimensional polymers can further assemble via hydrogen bonds or other non-covalent interactions to give two-dimensional or three-dimensional coordination polymeric structures (Yang et al., 2004).

We have focused on the synthesis of multi-dimensional network structures from a flexible chiral multi-dentate ligand, namely the reduced Schiff base formed between salicylaldehyde and L-aspartic acid (Sreenivasulu et al., 2005). Here we report the synthesis and crystal structure of the title compound.

As shown in Fig. 1, there exists a chiral center C8 in the organic ligand S-H3sasp which induces the title compound to crystallize in a chiral space group P21. In the title compound, the central Cu atom is five- coordinated and adopts a distorted square-pyramidal geometry. The coordination environment is defined by one N atom and three O atoms from the S-H3sasp ligand, and one O atom from the water molecule. The carboxyl O of the ligands bridge the Cu atoms to form an infinite one-dimensional zigzag chain.

The intermolecular hydrogen bonds, O1W—H1WA···O2, O1W—H1WB···O4, O1—H1A···O5, N1—H1B···O3 and other non-covalent interactions link the coordination polymer into a two-dimensional network (Table 2 and Fig. 2).

Experimental

The homochiral reduced Schiff-base ligand S-N-(2-hydroxybenzyl)-L-aspartic acid was synthesized by the reaction of salicylaldehyde and L-aspartic acid according to the published procedure described in the literature (Sreenivasulu & Vittal, 2004). A mixture of S-N-(2-hydroxybenzyl)-L-aspartic acid (23.9 mg, 0.1 mmol) and Cu(NO3)2.3H2O (24.2 mg, 0.1 mmol) were dissolved in water and methanol. Blue crystals suitable for X-ray analysis were obtained by slow evaporation at room temperature over several days.

Refinement

The water H atoms bonded to O1W were located in a difference map and refined with distance restraints of O1W—H = 0.83 (2) but were subsequently fixed. Other H atoms were calculated geometrically and were allowed to ride on the atoms to which they are bonded. Uiso(H) values were 1.5Ueq(O) and 1.2Ueq(C or N).

Figures

Fig. 1.
The molecular structure of the compound with the atomic numbering scheme. Displacement ellipsoids are at the 30% probability level and all hydrogen atoms are omitted for clarity.
Fig. 2.
A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C11H11NO5)(H2O)]F000 = 326
Mr = 318.77Dx = 1.709 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1876 reflections
a = 5.9107 (13) Åθ = 3.4–27.5º
b = 8.826 (2) ŵ = 1.79 mm1
c = 11.903 (3) ÅT = 293 (2) K
β = 93.787 (19)ºPrism, colourless
V = 619.6 (3) Å30.2 × 0.2 × 0.2 mm
Z = 2

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer2934 independent reflections
Radiation source: fine-focus sealed tube2532 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.058
Detector resolution: 13.6612 pixels mm-1θmax = 27.9º
T = 293(2) Kθmin = 2.9º
ω scansh = −7→7
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.690, Tmax = 0.703l = −15→15
6500 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041  w = 1/[σ2(Fo2) + (0.0135P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max = 0.001
S = 0.99Δρmax = 0.48 e Å3
2934 reflectionsΔρmin = −0.41 e Å3
172 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 1355 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.064 (16)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.10776 (6)0.12114 (6)0.91119 (3)0.02344 (12)
O2−0.2062 (4)0.0614 (3)0.8604 (2)0.0281 (6)
O1W0.4293 (4)0.1802 (3)0.9514 (2)0.0474 (9)
H1WA0.51390.13010.91410.071*
H1WB0.46890.26970.96840.071*
N10.1790 (5)0.0507 (3)0.7580 (2)0.0202 (6)
H1B0.32410.00250.77020.024*
O10.0408 (5)0.3744 (3)0.8257 (2)0.0410 (7)
H1A0.01570.45580.85570.061*
C80.0087 (6)−0.0670 (4)0.7261 (3)0.0212 (8)
H8A−0.0121−0.07150.64380.025*
O3−0.3920 (4)−0.0856 (3)0.7316 (3)0.0415 (8)
C6−0.0171 (7)0.2611 (4)0.6464 (3)0.0285 (9)
C9−0.2184 (6)−0.0274 (4)0.7737 (3)0.0226 (8)
C1−0.0879 (7)0.3633 (5)0.7264 (3)0.0309 (9)
C2−0.2846 (7)0.4502 (5)0.7032 (4)0.0408 (11)
H2A−0.33370.51720.75680.049*
C5−0.1454 (8)0.2473 (5)0.5451 (3)0.0393 (12)
H5A−0.10140.17820.49180.047*
C70.1977 (7)0.1710 (4)0.6726 (3)0.0312 (9)
H7A0.24260.12500.60350.037*
H7B0.31730.24030.69870.037*
C3−0.4050 (8)0.4350 (6)0.6000 (4)0.0506 (13)
H3A−0.53340.49380.58350.061*
C100.0854 (6)−0.2238 (4)0.7707 (3)0.0239 (8)
H10A−0.0131−0.30080.73580.029*
H10B0.2382−0.24340.74930.029*
C110.0808 (6)−0.2362 (4)0.8979 (3)0.0238 (8)
C4−0.3354 (9)0.3333 (6)0.5220 (4)0.0505 (13)
H4A−0.41770.32290.45310.061*
O5−0.0374 (4)−0.3461 (3)0.9343 (2)0.0297 (7)
O40.1842 (5)−0.1414 (3)0.9602 (2)0.0350 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.01864 (19)0.0292 (2)0.0225 (2)−0.0011 (2)0.00118 (15)−0.0045 (2)
O20.0185 (13)0.0362 (14)0.0302 (14)−0.0005 (11)0.0067 (11)−0.0075 (12)
O1W0.0204 (15)0.061 (2)0.060 (2)−0.0040 (13)0.0016 (14)−0.0351 (17)
N10.0182 (15)0.0212 (14)0.0213 (15)−0.0010 (12)0.0014 (12)−0.0015 (13)
O10.0457 (18)0.0356 (16)0.0408 (17)0.0072 (14)−0.0029 (15)−0.0119 (14)
C80.0221 (19)0.0250 (18)0.0167 (17)−0.0038 (16)0.0027 (15)−0.0007 (15)
O30.0161 (14)0.054 (2)0.0540 (19)−0.0037 (13)−0.0015 (13)−0.0196 (15)
C60.039 (2)0.0231 (19)0.024 (2)−0.0066 (17)0.0083 (18)0.0059 (16)
C90.0185 (18)0.028 (2)0.0207 (18)0.0008 (15)−0.0036 (15)0.0019 (15)
C10.034 (2)0.024 (2)0.034 (2)−0.0066 (18)0.0044 (19)0.0021 (18)
C20.038 (2)0.027 (2)0.057 (3)−0.002 (2)0.003 (2)0.001 (2)
C50.060 (3)0.038 (3)0.020 (2)−0.010 (2)0.002 (2)0.0048 (19)
C70.036 (2)0.026 (2)0.033 (2)−0.0079 (16)0.0151 (18)0.0016 (15)
C30.036 (3)0.039 (2)0.077 (4)−0.006 (2)0.000 (3)0.028 (3)
C100.024 (2)0.0228 (18)0.0253 (19)−0.0027 (16)0.0057 (16)−0.0012 (16)
C110.027 (2)0.0228 (18)0.0220 (19)0.0082 (16)0.0042 (17)0.0037 (15)
C40.059 (3)0.055 (3)0.035 (3)−0.018 (3)−0.014 (2)0.024 (2)
O50.0316 (14)0.0326 (19)0.0252 (13)−0.0070 (12)0.0045 (11)0.0059 (11)
O40.0492 (18)0.0286 (15)0.0255 (14)−0.0088 (15)−0.0093 (13)0.0005 (12)

Geometric parameters (Å, °)

Cu1—O5i1.934 (2)C6—C11.395 (6)
Cu1—O21.985 (3)C6—C71.513 (5)
Cu1—N11.998 (3)C1—C21.405 (6)
Cu1—O1W1.998 (3)C2—C31.385 (6)
Cu1—O42.424 (3)C2—H2A0.9300
O2—C91.294 (4)C5—C41.368 (7)
O1W—H1WA0.8200C5—H5A0.9300
O1W—H1WB0.8442C7—H7A0.9700
N1—C81.479 (4)C7—H7B0.9700
N1—C71.479 (4)C3—C41.374 (7)
N1—H1B0.9600C3—H3A0.9300
O1—C11.366 (4)C10—C111.520 (5)
O1—H1A0.8200C10—H10A0.9700
C8—C91.532 (5)C10—H10B0.9700
C8—C101.540 (5)C11—O41.250 (5)
C8—H8A0.9800C11—O51.287 (4)
O3—C91.225 (4)C4—H4A0.9300
C6—C51.387 (6)O5—Cu1ii1.934 (2)
O5i—Cu1—O294.24 (11)O1—C1—C6117.5 (4)
O5i—Cu1—N1170.47 (11)O1—C1—C2122.5 (4)
O2—Cu1—N183.59 (12)C6—C1—C2120.1 (4)
O5i—Cu1—O1W89.66 (11)C3—C2—C1119.4 (4)
O2—Cu1—O1W176.09 (11)C3—C2—H2A120.3
N1—Cu1—O1W92.61 (12)C1—C2—H2A120.3
O5i—Cu1—O487.84 (10)C4—C5—C6121.4 (4)
O2—Cu1—O488.57 (10)C4—C5—H5A119.3
N1—Cu1—O482.84 (11)C6—C5—H5A119.3
O1W—Cu1—O491.87 (11)N1—C7—C6114.7 (3)
C9—O2—Cu1113.9 (2)N1—C7—H7A108.6
Cu1—O1W—H1WA109.5C6—C7—H7A108.6
Cu1—O1W—H1WB123.1N1—C7—H7B108.6
H1WA—O1W—H1WB117.7C6—C7—H7B108.6
C8—N1—C7114.1 (3)H7A—C7—H7B107.6
C8—N1—Cu1105.8 (2)C4—C3—C2120.2 (4)
C7—N1—Cu1115.7 (2)C4—C3—H3A119.9
C8—N1—H1B108.3C2—C3—H3A119.9
C7—N1—H1B108.4C11—C10—C8112.6 (3)
Cu1—N1—H1B103.9C11—C10—H10A109.1
C1—O1—H1A109.5C8—C10—H10A109.1
N1—C8—C9110.1 (3)C11—C10—H10B109.1
N1—C8—C10111.3 (3)C8—C10—H10B109.1
C9—C8—C10108.8 (3)H10A—C10—H10B107.8
N1—C8—H8A108.9O4—C11—O5124.0 (3)
C9—C8—H8A108.9O4—C11—C10120.2 (3)
C10—C8—H8A108.9O5—C11—C10115.8 (3)
C5—C6—C1118.6 (4)C5—C4—C3120.3 (4)
C5—C6—C7122.4 (4)C5—C4—H4A119.8
C1—C6—C7119.0 (4)C3—C4—H4A119.8
O3—C9—O2125.6 (3)C11—O5—Cu1ii126.0 (2)
O3—C9—C8118.9 (3)C11—O4—Cu1114.9 (2)
O2—C9—C8115.4 (3)
O5i—Cu1—O2—C9−153.3 (2)O1—C1—C2—C3179.0 (4)
N1—Cu1—O2—C917.3 (2)C6—C1—C2—C3−1.0 (6)
O4—Cu1—O2—C9−65.6 (2)C1—C6—C5—C41.2 (6)
O2—Cu1—N1—C8−28.4 (2)C7—C6—C5—C4−178.0 (4)
O1W—Cu1—N1—C8152.5 (2)C8—N1—C7—C660.9 (4)
O4—Cu1—N1—C861.0 (2)Cu1—N1—C7—C6−62.2 (4)
O2—Cu1—N1—C799.0 (3)C5—C6—C7—N1−108.9 (4)
O1W—Cu1—N1—C7−80.0 (3)C1—C6—C7—N171.9 (4)
O4—Cu1—N1—C7−171.6 (3)C1—C2—C3—C41.5 (6)
C7—N1—C8—C9−93.8 (3)N1—C8—C10—C1170.4 (4)
Cu1—N1—C8—C934.5 (3)C9—C8—C10—C11−51.0 (4)
C7—N1—C8—C10145.4 (3)C8—C10—C11—O4−54.0 (5)
Cu1—N1—C8—C10−86.2 (3)C8—C10—C11—O5124.7 (3)
Cu1—O2—C9—O3175.6 (3)C6—C5—C4—C3−0.7 (6)
Cu1—O2—C9—C8−1.0 (4)C2—C3—C4—C5−0.6 (6)
N1—C8—C9—O3159.8 (3)O4—C11—O5—Cu1ii6.6 (5)
C10—C8—C9—O3−78.0 (4)C10—C11—O5—Cu1ii−172.1 (2)
N1—C8—C9—O2−23.4 (4)O5—C11—O4—Cu1−128.6 (3)
C10—C8—C9—O298.9 (3)C10—C11—O4—Cu150.0 (4)
C5—C6—C1—O1179.7 (3)O5i—Cu1—O4—C11127.5 (3)
C7—C6—C1—O1−1.1 (5)O2—Cu1—O4—C1133.2 (3)
C5—C6—C1—C2−0.3 (6)N1—Cu1—O4—C11−50.5 (3)
C7—C6—C1—C2178.9 (3)O1W—Cu1—O4—C11−142.9 (3)

Symmetry codes: (i) −x, y+1/2, −z+2; (ii) −x, y−1/2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2iii0.821.912.688 (3)158
O1W—H1WB···O4iv0.842.302.913 (4)129
N1—H1B···O3iii0.961.932.843 (4)158
O1—H1A···O5v0.822.022.837 (4)178

Symmetry codes: (iii) x+1, y, z; (iv) −x+1, y+1/2, −z+2; (v) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2047).

References

  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lü, Z.-L., Zhang, D.-Q., Gao, S. & Zhu, D.-B. (2005). Inorg. Chem. Commun.8, 746–750.
  • Rigaku (2005). CrystalClear Version 1.4.0. Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1999). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sreenivasulu, B., Vetrichelvan, M., Zhao, F., Gao, S. & Vittal, J. J. (2005). Eur. J. Inorg. Chem. pp. 4635–4645.
  • Sreenivasulu, B. & Vittal, J. J. (2004). Angew. Chem. Int. Ed.43, 5769–5772. [PubMed]
  • Wang, X.-B., Ranford, J. D. & Vittal, J. J. (2006). J. Mol. Struct.796, 28–35.
  • Yang, X.-D., Ranford, J. D. & Vittal, J. J. (2004). Cryst. Growth Des.4, 781–788.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography