PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m142.
Published online 2007 December 12. doi:  10.1107/S1600536807057169
PMCID: PMC2915086

(Dicyanamido)[2-(2-pyridylmethyl­imino­meth­yl)phenolato]copper(II) monohydrate

Abstract

The title compound, [Cu(C13H11N2O)(C2N3)]·H2O, is a mononuclear copper(II) complex in which the CuII ion has a slightly distorted square-planar geometry and is coordinated by two N atoms and one O atom from the Schiff base ligand and by an N atom from dicyanamide. The O atoms of water mol­ecules contribute to O—H(...)N, O—H(...)O hydrogen bonds, leading to the formation of sheets parallel to the ac plane. There are also weak inter­actions between inversion-related mol­ecules.

Related literature

For related literature, see: You & Zhu (2004 [triangle]); Li & Zhang (2004 [triangle]); You et al. (2004 [triangle]); Zhang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m142-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H11N2O)(C2N3)]·H2O
  • M r = 358.84
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m142-efi1.jpg
  • a = 9.8851 (12) Å
  • b = 7.0240 (6) Å
  • c = 21.398 (3) Å
  • β = 98.382 (9)°
  • V = 1469.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.50 mm−1
  • T = 293 (2) K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Rigaku Mercury2 CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.693, T max = 0.741
  • 14839 measured reflections
  • 3487 independent reflections
  • 2664 reflections with I > 2σ(I)
  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.115
  • S = 1.04
  • 3487 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: Crystal­Clear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Sheldrick, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807057169/pk2057sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807057169/pk2057Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was financially supported by the NNSFC (No. 20361004 and 20561004), the Key Project of the Chinese Ministry of Education (No. 205147), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 2006673015) and the NSF of Yunnan Province (No. 2004E0008M and 2003RC13).

supplementary crystallographic information

Comment

Transition metal compounds containing Schiff base ligands have been of great interest for many years. These compounds play an important role in the development of coordination chemistry due to their potential applications in catalysis and enzymatic reactions, magnetism and molecular architecture (You & Zhu, 2004; Li & Zhang, 2004). Here we report the structure of a complex that is formed by Cu(CH3COO)2, the Schiff base ligand 2-(pyridin-2-ylmethyliminomethyl)phenol and sodium dicyanamide.

As shown in Fig. 1, the asymmetric unit consists of a mononuclear [Cu(C13H11N2O)N(CN)2] and a H-bonded water molecule. The central CuII ion is four-coordinate and adopts a slightly distorted square-planar geometry that is defined by two N atoms and one O atom from the Schiff base ligand and another N atom from dicyanamide. The C7=N1 and C8—N1 distances of 1.293 (4) Å and 1.466 (4) Å indicate double and single bonds respectively. The bond angles around the CuII centre show some deviations from ideal square-planar geometry (You et al., 2004). Also, the closeness of the planes of inversion related molecules imply weak intramolecular interactions cross an inversion centre such that the distance between Cu1 and O1 of an inversion related phenolato is 2.814 (2) Å, which is much longer than Cu—O bond length.

The water molecule is involved in intermolecular (O1W—H1WA···N5) and intramolecular hydrogen bonds (O1W—H1WB···O1, O1W—H1WB···N3), which leads to sheets parallel to the ac plane (Fig. 2).

Experimental

All chemicals used (reagent grade) were commercially available. Salicylaldehyde (0.122 g, 1 mmol) was dissolved in ethanol (5 mL) and ethanol solution (5 mL) containing 2-aminomethylpyridine (0.108 g, 1 mmol) was added slowly with stirring. The resulting yellow solution was continuously stirred for about 30 min at room temperature, and then Cu(CH3COO)2.H2O (0.200 g, 1 mmol) in aqueous solution (5 mL) was added with stirring homogeneously. Dark blue crystals suitable for X-ray ananlysis were obtained by slow evaporation at room temperature over several days (Zhang et al., 2005).

Refinement

Water H atoms were located in a difference map and refined with distance restraints of O1W—H = 0.87 (2). Other H atoms were placed in calculated positions and allowed to ride on their attached C atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A crystal packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cu(C13H11N2O)(C2N3)]·H2OF000 = 732
Mr = 358.84Dx = 1.622 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3146 reflections
a = 9.8851 (12) Åθ = 3.0–27.5º
b = 7.0240 (6) ŵ = 1.50 mm1
c = 21.398 (3) ÅT = 293 (2) K
β = 98.382 (9)ºPrism, colourless
V = 1469.9 (3) Å30.2 × 0.2 × 0.2 mm
Z = 4

Data collection

Rigaku Mercury2 CCD diffractometer3487 independent reflections
Radiation source: fine-focus sealed tube2664 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.048
Detector resolution: 13.6612 pixels mm-1θmax = 27.9º
T = 293(2) Kθmin = 2.6º
ω scansh = −13→13
Absorption correction: multi-scan(CrystalClear; Rigaku, 2005)k = −9→9
Tmin = 0.693, Tmax = 0.741l = −28→28
14839 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.115  w = 1/[σ2(Fo2) + (0.0583P)2 + 0.2406P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3487 reflectionsΔρmax = 0.61 e Å3
208 parametersΔρmin = −0.35 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.56134 (3)0.30788 (5)0.548195 (15)0.04185 (13)
O10.42489 (19)0.2985 (3)0.47469 (10)0.0489 (5)
N20.7131 (2)0.3036 (3)0.62161 (11)0.0411 (5)
N10.6994 (2)0.1915 (3)0.50553 (12)0.0463 (6)
C10.4349 (3)0.2127 (4)0.41987 (14)0.0439 (6)
N30.4226 (2)0.3912 (4)0.59818 (11)0.0477 (5)
O1W0.1486 (2)0.3114 (5)0.50627 (14)0.0968 (11)
H1WA0.09840.30910.46900.116*
H1WB0.23220.32660.49740.116*
C100.7040 (3)0.3557 (4)0.68161 (15)0.0508 (7)
H10A0.62190.40510.69080.061*
C70.6801 (3)0.1162 (4)0.44982 (13)0.0454 (6)
H7A0.75360.05210.43700.055*
C60.3203 (3)0.2118 (4)0.37236 (14)0.0501 (7)
H6A0.23840.26470.38050.060*
N40.2314 (2)0.4829 (5)0.65140 (12)0.0617 (7)
C140.3289 (3)0.4396 (4)0.62031 (12)0.0436 (6)
C30.5580 (3)0.0428 (4)0.34622 (14)0.0525 (7)
H3A0.6374−0.01630.33770.063*
C80.8366 (3)0.1772 (5)0.54199 (15)0.0582 (8)
H8A0.89860.26150.52420.070*
H8B0.87040.04800.54000.070*
C130.9430 (3)0.2075 (5)0.65564 (17)0.0584 (8)
H13A1.02410.15620.64600.070*
C20.5558 (3)0.1225 (4)0.40608 (13)0.0441 (6)
C110.8115 (4)0.3384 (5)0.72932 (16)0.0616 (8)
H11A0.80300.37800.77000.074*
C40.4466 (3)0.0493 (5)0.29979 (15)0.0594 (8)
H4B0.4506−0.00140.26000.071*
C90.8314 (3)0.2302 (4)0.60885 (14)0.0456 (6)
C120.9325 (3)0.2615 (5)0.71624 (18)0.0652 (9)
H12A1.00620.24640.74820.078*
C50.3281 (3)0.1335 (4)0.31392 (15)0.0549 (8)
H5A0.25140.13730.28310.066*
C150.1320 (3)0.5962 (5)0.62805 (14)0.0545 (7)
N50.0420 (3)0.6967 (5)0.61320 (16)0.0770 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.03160 (19)0.0507 (2)0.0433 (2)0.00257 (13)0.00549 (13)0.00151 (14)
O10.0344 (10)0.0648 (13)0.0469 (11)0.0028 (8)0.0043 (8)−0.0062 (9)
N20.0357 (11)0.0430 (12)0.0442 (13)0.0004 (9)0.0047 (9)0.0042 (9)
N10.0312 (11)0.0562 (14)0.0521 (14)−0.0002 (9)0.0083 (10)0.0005 (11)
C10.0412 (14)0.0423 (15)0.0486 (17)−0.0065 (11)0.0073 (11)0.0018 (12)
N30.0408 (12)0.0539 (14)0.0489 (14)0.0061 (11)0.0080 (10)0.0039 (11)
O1W0.0436 (13)0.174 (3)0.0718 (18)−0.0051 (16)0.0055 (12)−0.0185 (18)
C100.0467 (16)0.0547 (16)0.0497 (17)0.0006 (13)0.0028 (13)0.0026 (13)
C70.0406 (14)0.0480 (15)0.0501 (17)0.0011 (12)0.0145 (12)0.0022 (13)
C60.0427 (15)0.0533 (17)0.0525 (18)−0.0056 (12)0.0004 (12)−0.0015 (13)
N40.0453 (14)0.096 (2)0.0449 (14)0.0191 (14)0.0118 (11)0.0100 (14)
C140.0391 (14)0.0506 (15)0.0396 (14)0.0007 (11)0.0008 (11)0.0042 (12)
C30.0577 (17)0.0534 (17)0.0491 (17)−0.0048 (13)0.0165 (14)0.0012 (13)
C80.0320 (14)0.082 (2)0.061 (2)0.0052 (14)0.0089 (13)−0.0044 (16)
C130.0336 (15)0.069 (2)0.070 (2)0.0030 (13)−0.0012 (13)−0.0001 (17)
C20.0431 (14)0.0453 (14)0.0448 (16)−0.0048 (11)0.0099 (11)0.0029 (12)
C110.065 (2)0.068 (2)0.0484 (18)−0.0034 (16)−0.0009 (15)−0.0006 (15)
C40.073 (2)0.0593 (19)0.0467 (18)−0.0120 (16)0.0101 (15)−0.0048 (14)
C90.0321 (13)0.0475 (15)0.0569 (17)−0.0037 (11)0.0056 (11)0.0026 (13)
C120.0453 (18)0.073 (2)0.071 (2)−0.0014 (16)−0.0122 (15)0.0050 (18)
C50.0582 (18)0.0539 (16)0.0496 (18)−0.0096 (14)−0.0025 (14)0.0038 (14)
C150.0403 (15)0.079 (2)0.0451 (16)0.0023 (15)0.0084 (12)−0.0045 (15)
N50.0517 (17)0.104 (3)0.074 (2)0.0257 (16)0.0057 (14)−0.0008 (17)

Geometric parameters (Å, °)

Cu1—O11.9181 (19)C6—H6A0.9300
Cu1—N11.931 (2)N4—C141.284 (4)
Cu1—N31.948 (2)N4—C151.306 (4)
Cu1—N22.008 (2)C3—C41.372 (4)
O1—C11.335 (4)C3—C21.401 (4)
N2—C91.342 (4)C3—H3A0.9300
N2—C101.351 (4)C8—C91.487 (4)
N1—C71.293 (4)C8—H8A0.9700
N1—C81.466 (4)C8—H8B0.9700
C1—C61.407 (4)C13—C121.369 (5)
C1—C21.421 (4)C13—C91.386 (4)
N3—C141.152 (3)C13—H13A0.9300
O1W—H1WA0.8754C11—C121.377 (5)
O1W—H1WB0.8814C11—H11A0.9300
C10—C111.367 (4)C4—C51.384 (4)
C10—H10A0.9300C4—H4B0.9300
C7—C21.432 (4)C12—H12A0.9300
C7—H7A0.9300C5—H5A0.9300
C6—C51.379 (4)C15—N51.144 (4)
O1—Cu1—N193.37 (9)C4—C3—H3A119.0
O1—Cu1—N389.62 (9)C2—C3—H3A119.0
N1—Cu1—N3171.71 (10)N1—C8—C9109.6 (2)
O1—Cu1—N2175.47 (9)N1—C8—H8A109.7
N1—Cu1—N282.22 (10)C9—C8—H8A109.7
N3—Cu1—N294.61 (10)N1—C8—H8B109.7
C1—O1—Cu1127.05 (18)C9—C8—H8B109.7
C9—N2—C10118.6 (2)H8A—C8—H8B108.2
C9—N2—Cu1114.9 (2)C12—C13—C9119.3 (3)
C10—N2—Cu1126.45 (19)C12—C13—H13A120.3
C7—N1—C8117.6 (2)C9—C13—H13A120.3
C7—N1—Cu1126.15 (19)C3—C2—C1119.5 (3)
C8—N1—Cu1116.1 (2)C3—C2—C7117.3 (3)
O1—C1—C6118.8 (3)C1—C2—C7123.0 (3)
O1—C1—C2123.8 (3)C10—C11—C12119.1 (3)
C6—C1—C2117.4 (3)C10—C11—H11A120.5
C14—N3—Cu1170.9 (2)C12—C11—H11A120.5
H1WA—O1W—H1WB103.3C3—C4—C5118.1 (3)
N2—C10—C11122.3 (3)C3—C4—H4B120.9
N2—C10—H10A118.9C5—C4—H4B120.9
C11—C10—H10A118.9N2—C9—C13121.5 (3)
N1—C7—C2125.9 (3)N2—C9—C8116.4 (2)
N1—C7—H7A117.0C13—C9—C8122.1 (3)
C2—C7—H7A117.0C13—C12—C11119.3 (3)
C5—C6—C1120.8 (3)C13—C12—H12A120.4
C5—C6—H6A119.6C11—C12—H12A120.4
C1—C6—H6A119.6C6—C5—C4122.0 (3)
C14—N4—C15121.7 (3)C6—C5—H5A119.0
N3—C14—N4172.7 (3)C4—C5—H5A119.0
C4—C3—C2122.1 (3)N5—C15—N4173.6 (3)
N1—Cu1—O1—C17.4 (2)C4—C3—C2—C7−176.8 (3)
N3—Cu1—O1—C1−164.8 (2)O1—C1—C2—C3−177.5 (2)
N1—Cu1—N2—C90.57 (19)C6—C1—C2—C32.0 (4)
N3—Cu1—N2—C9172.9 (2)O1—C1—C2—C7−0.6 (4)
N1—Cu1—N2—C10−175.2 (2)C6—C1—C2—C7178.9 (3)
N3—Cu1—N2—C10−2.9 (2)N1—C7—C2—C3175.9 (3)
O1—Cu1—N1—C7−8.8 (3)N1—C7—C2—C1−1.1 (5)
N2—Cu1—N1—C7170.1 (3)N2—C10—C11—C12−1.4 (5)
O1—Cu1—N1—C8175.4 (2)C2—C3—C4—C5−1.7 (5)
N2—Cu1—N1—C8−5.6 (2)C10—N2—C9—C13−0.1 (4)
Cu1—O1—C1—C6176.29 (19)Cu1—N2—C9—C13−176.2 (2)
Cu1—O1—C1—C2−4.3 (4)C10—N2—C9—C8−179.3 (3)
C9—N2—C10—C110.8 (4)Cu1—N2—C9—C84.5 (3)
Cu1—N2—C10—C11176.5 (2)C12—C13—C9—N2−0.1 (5)
C8—N1—C7—C2−177.1 (3)C12—C13—C9—C8179.1 (3)
Cu1—N1—C7—C27.2 (4)N1—C8—C9—N2−8.7 (4)
O1—C1—C6—C5176.7 (3)N1—C8—C9—C13172.0 (3)
C2—C1—C6—C5−2.8 (4)C9—C13—C12—C11−0.4 (5)
C7—N1—C8—C9−167.0 (3)C10—C11—C12—C131.2 (5)
Cu1—N1—C8—C99.1 (3)C1—C6—C5—C41.4 (5)
C4—C3—C2—C10.2 (4)C3—C4—C5—C60.9 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···N5i0.882.082.947 (4)173
O1W—H1WB···O10.882.042.909 (3)167
O1W—H1WB···N30.882.693.157 (3)115

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2057).

References

  • Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017–m1019.
  • Rigaku (2005). CrystalStructure Version 1.4.0. Rigaku Americas Corporation, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1999). SHELXTL/PC Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884–m886.
  • You, Z.-L. & Zhu, H.-L. (2004). Z. Anorg. Allg. Chem.630, 2754–2760.
  • Zhang, J.-H., Xi, Y., Wang, C., Li, J., Zhang, F.-X. & Ng, S. W. (2005). Acta Cryst. E61, m2338–m2339.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography