PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m131.
Published online 2007 December 6. doi:  10.1107/S1600536807043681
PMCID: PMC2915079

Diaqua­bis(picolinato N-oxide-κ2 O,O′)zinc(II)

Abstract

In the title compound, [Zn(C6H4NO3)2(H2O)2], the Zn atom is located on a centre of inversion and shows a distorted octa­hedral coordination geometry. Two aqua ligands occupy the axial positions and four O atoms of the two chelating picolinic acid N-oxide ligands are located in the equatorial plane. Inter­molecular hydrogen bonds between aqua ligands and organic ligands link mol­ecules into a two-dimensional arrangement.

Related literature

For related literature, see: Bayot et al. (2006 [triangle]); Ciurtin et al. (2003 [triangle]); Lawrence et al. (1999 [triangle]); Meinrath et al. (2006 [triangle]); Shan et al. (2002 [triangle]); Steiner (2002 [triangle]); Yang et al. (2004 [triangle]); Zafar et al. (2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m131-scheme1.jpg

Experimental

Crystal data

  • [Zn(C6H4NO3)2(H2O)2]
  • M r = 377.63
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m131-efi1.jpg
  • a = 6.6837 (5) Å
  • b = 15.7376 (13) Å
  • c = 6.9935 (6) Å
  • β = 115.3700 (10)°
  • V = 664.67 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.90 mm−1
  • T = 298 (2) K
  • 0.21 × 0.18 × 0.16 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan CrystalClear (Rigaku, 2005 [triangle]) T min = 0.674, T max = 0.733
  • 3515 measured reflections
  • 1170 independent reflections
  • 1033 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.149
  • S = 1.15
  • 1170 reflections
  • 106 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.90 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Sheldrick, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807043681/er2040sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807043681/er2040Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (project No. 20671019) for financial support.

supplementary crystallographic information

Comment

In the past decade, much attention has been paid to the design and synthesis of self-assembling systems with organic ligands containing N and O donors (Bayot et al., 2006; Ciurtin et al., 2003; Steiner, 2002; Zafar et al., 2000). Picolinic acid N-oxide (PANO) is one such ligand and several crystal structures of complexes containing the PANO ligand have been reported (Yang et al., 2004; Shan et al., 2002; Lawrence et al., 1999; Meinrath et al., 2006). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1). In (I), the Zn atom is located on a crystallographic inversion centre and adopts a distorted octahedral coordination geometry. The coordination environment is defined by two pyridine N-oxide oxygen donors and two oxygen donors from the carboxylate groups located in the equatorial plane and two aqua O-atom donors located in the axial positions (Fig. 1). Selected bond lengths and angles are shown in Table 1. Intermolecular O1W—H1WA···O1, O1W—H1WB···O1 hydrogen bonds between water molecules and carboxylate groups connect the molecules of (I) into a two-dimensional network (Table 2 and Fig. 2).

Experimental

All chemicals were obtained from commercial sources and used without further purification. The title compound was prepared by the direct reaction of Zn(OOCCH3)2.2H2O (22.1 mg, 0.1 mmol) and picolinic acid N-oxide (13.9 mg, 0.1 mmol) in water solution. Colourless block-shaped single crystals were obtained by slow evaporation at room temperature for about three weeks.

Refinement

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Symmetry operation (A): [1 - x, 1 - y, 1 - z].
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

[Zn(C6H4NO3)2(H2O)2]F000 = 384
Mr = 377.63Dx = 1.887 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.6837 (5) Åθ = 7.5–15º
b = 15.7376 (13) ŵ = 1.90 mm1
c = 6.9935 (6) ÅT = 298 (2) K
β = 115.3700 (10)ºBlock, colourless
V = 664.67 (9) Å30.21 × 0.18 × 0.16 mm
Z = 2

Data collection

Bruker SMART CCD diffractometer1170 independent reflections
Radiation source: fine-focus sealed tube1033 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.019
Detector resolution: 10 pixels mm-1θmax = 25.0º
T = 298(2) Kθmin = 2.6º
[var phi] and ω scansh = −7→7
Absorption correction: multi-scanCrystalClear (Rigaku, 2005)k = −18→17
Tmin = 0.674, Tmax = 0.733l = −6→8
3515 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.149  w = 1/[σ2(Fo2) + (0.0918P)2 + 1.2258P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
1170 reflectionsΔρmax = 0.56 e Å3
106 parametersΔρmin = −0.90 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.50000.50000.50000.0252 (3)
O1W0.4917 (5)0.43468 (18)0.7653 (4)0.0222 (7)
H1WA0.62910.41700.85150.033*
H1WB0.44230.47020.83650.033*
O1−0.1745 (5)0.49427 (16)0.1316 (6)0.0229 (7)
O20.1644 (5)0.52224 (19)0.3760 (5)0.0218 (7)
O30.4215 (4)0.38945 (17)0.3288 (5)0.0217 (7)
N10.2521 (5)0.3424 (2)0.3225 (5)0.0168 (7)
C10.0530 (6)0.3771 (2)0.2833 (6)0.0175 (8)
C2−0.1198 (7)0.3240 (3)0.2650 (7)0.0232 (9)
H2A−0.26100.34830.23840.028*
C3−0.0923 (8)0.2365 (3)0.2826 (7)0.0287 (10)
H3A−0.21350.19990.26670.034*
C40.1137 (8)0.2034 (3)0.3249 (7)0.0273 (10)
H4A0.13860.14320.34030.033*
C50.2825 (7)0.2572 (3)0.3436 (7)0.0234 (9)
H5A0.42590.23410.37370.028*
C60.0146 (6)0.4725 (3)0.2616 (6)0.0177 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0186 (5)0.0236 (5)0.0293 (5)−0.0011 (2)0.0064 (4)−0.0029 (3)
O1W0.0178 (14)0.0239 (15)0.0222 (14)0.0006 (11)0.0059 (11)0.0006 (11)
O10.0128 (16)0.0208 (16)0.0256 (17)0.0033 (10)−0.0008 (13)−0.0021 (11)
O20.0118 (14)0.0176 (13)0.0289 (16)−0.0007 (11)0.0020 (12)−0.0062 (13)
O30.0131 (13)0.0210 (14)0.0313 (16)−0.0047 (11)0.0099 (12)−0.0094 (12)
N10.0162 (16)0.0150 (16)0.0172 (16)−0.0009 (12)0.0051 (13)−0.0036 (13)
C10.0165 (19)0.0163 (19)0.0172 (19)0.0014 (15)0.0048 (16)−0.0027 (15)
C20.019 (2)0.021 (2)0.028 (2)−0.0020 (16)0.0087 (18)−0.0012 (17)
C30.032 (3)0.023 (2)0.032 (2)−0.0086 (18)0.015 (2)−0.0015 (18)
C40.039 (3)0.014 (2)0.029 (2)0.0003 (17)0.014 (2)−0.0004 (17)
C50.027 (2)0.0164 (19)0.025 (2)0.0044 (16)0.0089 (19)−0.0026 (16)
C60.0146 (19)0.0186 (19)0.022 (2)0.0019 (16)0.0101 (16)0.0006 (16)

Geometric parameters (Å, °)

Zn1—O3i2.049 (3)N1—C11.354 (5)
Zn1—O32.049 (3)N1—C51.356 (5)
Zn1—O2i2.059 (3)C1—C21.386 (6)
Zn1—O22.059 (3)C1—C61.520 (5)
Zn1—O1Wi2.143 (3)C2—C31.389 (6)
Zn1—O1W2.143 (3)C2—H2A0.9600
O1W—H1WA0.9000C3—C41.381 (7)
O1W—H1WB0.9001C3—H3A0.9601
O1—C61.247 (5)C4—C51.371 (6)
O2—C61.253 (5)C4—H4A0.9597
O3—N11.338 (4)C5—H5A0.9600
O3i—Zn1—O3180.00 (8)O3—N1—C5117.3 (3)
O3i—Zn1—O2i86.46 (11)C1—N1—C5120.6 (3)
O3—Zn1—O2i93.54 (11)N1—C1—C2118.9 (4)
O3i—Zn1—O293.54 (11)N1—C1—C6121.8 (3)
O3—Zn1—O286.46 (11)C2—C1—C6119.2 (3)
O2i—Zn1—O2180.0C3—C2—C1121.1 (4)
O3i—Zn1—O1Wi90.21 (11)C3—C2—H2A119.6
O3—Zn1—O1Wi89.79 (11)C1—C2—H2A119.3
O2i—Zn1—O1Wi91.07 (12)C2—C3—C4118.3 (4)
O2—Zn1—O1Wi88.93 (12)C2—C3—H3A120.8
O3i—Zn1—O1W89.79 (11)C4—C3—H3A120.9
O3—Zn1—O1W90.21 (11)C5—C4—C3119.5 (4)
O2i—Zn1—O1W88.93 (12)C5—C4—H4A120.2
O2—Zn1—O1W91.07 (12)C3—C4—H4A120.3
O1Wi—Zn1—O1W180.00 (13)N1—C5—C4121.5 (4)
Zn1—O1W—H1WA109.3N1—C5—H5A119.2
Zn1—O1W—H1WB109.5C4—C5—H5A119.4
H1WA—O1W—H1WB109.5O2—C6—O1125.2 (4)
C6—O2—Zn1126.3 (3)O2—C6—C1119.9 (4)
N1—O3—Zn1119.4 (2)O1—C6—C1114.8 (3)
O3—N1—C1121.9 (3)
O3i—Zn1—O2—C6−175.0 (3)C2—C1—C2—C30(100)
O3—Zn1—O2—C65.0 (3)C6—C1—C2—C3179.7 (4)
O1Wi—Zn1—O2—C694.8 (3)C1—C2—C3—C20(2)
O1W—Zn1—O2—C6−85.2 (3)C2—C2—C3—C40.0 (7)
O2i—Zn1—O3—N1137.7 (3)C1—C2—C3—C41.8 (7)
O2—Zn1—O3—N1−42.3 (3)C2—C3—C4—C5−1.4 (7)
O1Wi—Zn1—O3—N1−131.2 (3)C2—C3—C4—C5−1.4 (7)
O1W—Zn1—O3—N148.8 (3)O3—N1—C5—C4−175.5 (4)
Zn1—O3—N1—C147.5 (4)C1—N1—C5—C40.4 (6)
Zn1—O3—N1—C5−136.6 (3)C3—C4—C5—N10.3 (6)
O3—N1—C1—C2175.7 (3)Zn1—O2—C6—O1−154.2 (3)
C5—N1—C1—C20.0 (6)Zn1—O2—C6—C128.9 (5)
O3—N1—C1—C2175.7 (3)N1—C1—C6—O2−36.9 (6)
C5—N1—C1—C20.0 (6)C2—C1—C6—O2142.3 (4)
O3—N1—C1—C6−5.1 (5)C2—C1—C6—O2142.3 (4)
C5—N1—C1—C6179.2 (4)N1—C1—C6—O1145.9 (4)
N1—C1—C2—C20.0 (2)C2—C1—C6—O1−34.9 (5)
C6—C1—C2—C20.00 (6)C2—C1—C6—O1−34.9 (5)
N1—C1—C2—C3−1.1 (6)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1ii0.901.982.753 (4)143
O1W—H1WA···O1iii0.902.202.742 (4)118

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) x+1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2040).

References

  • Bayot, D., Degand, M., Tinant, B. & Devillers, M. (2006). Inorg. Chem. Commun.359, 1390–1394.
  • Ciurtin, D. M., Smith, M. D. & Loye, H.-C. (2003). Polyhedron, 22, 3043–3049.
  • Lawrence, R. G., Jones, C. J. & Kresinski, R. A. (1999). Inorg. Chim. Acta, 285, 283–289.
  • Meinrath, G., Lis, S. & Bohme, U. (2006). J. Alloys Compd.408, 962–969.
  • Rigaku (2005). CrystalClear Version 1.4.0. Rigaku Corporation, Tokyo, Japan.
  • Shan, X., Ellern, A. & Espenson, J. H. (2002). Inorg. Chem.41, 7136–7142. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1999). SHELXTL/PC Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Steiner, T. (2002). Angew. Chem. Int. Ed.41, 48–51.
  • Yang, B.-P., Mao, J.-G. & Dong, Z.-C. (2004). Inorg. Chem. Commun.7, 104–106.
  • Zafar, A., Geib, S. J., Hamuro, Y., Carr, A. J. & Hamilton, A. D. (2000). Tetrahedron, 56, 8419–8427.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography