PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m122.
Published online 2007 December 6. doi:  10.1107/S1600536807065087
PMCID: PMC2915073

(Piperazin-1-ium-κN 4)tris­(thio­cyanato-κN)zinc(II)

Abstract

Hydro­thermal reaction of NaSCN, piperazine, ZnII and 2,6-naphthalenedicarboxylic acid in aqueous solutions gave rise to the title complex, [Zn(NCS)3(C4H11N2)]. The ZnII atom is four-coordinate with distorted tetra­hedral geometry and lies in a mirror plane. N—H(...)S hydrogen bonds assemble the mol­ecules to form a three-dimensional framework.

Related literature

For related literature, see: Bie et al. (2005 [triangle]); Dai et al. (2002 [triangle]); Gu et al. (2007 [triangle]); Liu et al. (2007 [triangle]); Ouyang et al. (2003 [triangle]); Tao et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m122-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)3(C4H11N2)]
  • M r = 326.72
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m122-efi2.jpg
  • a = 16.8975 (8) Å
  • b = 11.0467 (4) Å
  • c = 7.3097 (3) Å
  • V = 1364.44 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.24 mm−1
  • T = 293 (2) K
  • 0.40 × 0.20 × 0.15 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.830, T max = 1.000 (expected range = 0.593–0.715)
  • 3079 measured reflections
  • 1237 independent reflections
  • 901 reflections with I > 2σ(I)
  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.154
  • S = 1.03
  • 1237 reflections
  • 82 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: APEX2 (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807065087/dn2286sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807065087/dn2286Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The project was supported by the Development Foundation of Shanghai Municipal Education Commission, China, and the Science Foundation for Excellent Young Scholars of Higher Education of Shanghai.

supplementary crystallographic information

Comment

d10 metal complexes have been found to exhibit intriguing structural and photoluminescent properties (Liu et al., 2007; Dai et al., 2002; Ouyang et al., 2003; Gu et al., 2007; Tao et al., 2003). When trying to prepare the zinc complex containing 2,6-naphthalenedicarboxylic acid, piperazine and thiocyanate ligands by hydrothermal reaction, we did not obtain the expected compound but instead of the tri-isothiocyanato-(piperazinium-N')-zinc(II) compound (I). The new complex has been characterized by elemental analysis and single-crystal diffraction analysis.

The Zn atom adopts a distorted tetrahedral coordination geometry and is coordinated by three N atoms from the thiocyanate anions and one piperazine N atom (Fig. 1). The Zn atom, one thiocyanate ligands and N atoms of piperazine ligands are located on a mirror plane. The Zn—N3 (piperazine) bond length is 2.054 (6) Å and the Zn-NCS bond lengths are almost equal at 1.935 (5) Å for N1 and 1.933 (8) Å for N2, respectively. The N—Zn—N angles are in the range 107.7 (3) ° ~112.3 (3) °. All bond distances and angles are as observed for other zinc(II) complexes with piperazine and thiocyanate ligands (Bie et al., 2005). There are intermolecular N—H···S hydrogen bonds in the compound, which assemble the molecules to form a a three dimensionnal framework.(Table 1 and Fig. 2)

Experimental

A mixture of ZnCl2.6H2O (0.49 g, 2 mmol), 2,6-naphthalenedicarboxylic acid (1 mmol, 0.26 g), piperazine (2 mmol, 0.17), NH4SCN (10 mmol, 0.15) and H2O (10 ml) was stirred for 0.5 h at room temperature. The reaction was carried out in a Teflon-lined steel autoclave, which was heated at 160oC for 2 d followed by slow cooling to room temperature. The resulting colorless prism-shaped crystals suitable for X-ray analysis were filtered off and washed with water. Analysis, calculated for C7H11N5S3Zn: C 25.96, H 3.13, N 21.79%; found: C 25.73, H 3.39, N 21.43%.

Refinement

H atoms were placed in idealized positions, with C—H distances of 0.97 Å, N—H distances of 0.90 Å, and allowed to ride on their respective parent C atoms with the constraint Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
View of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry codes: (i) x,-y + 1/2,z].
Fig. 2.
Crystal packing diagram of compound (I), Hydrogen bonding is indicated by dashed lines.

Crystal data

[Zn(NCS)3(C4H11N2)]F000 = 664
Mr = 326.72Dx = 1.590 Mg m3
Orthorhombic, PnmaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 75 reflections
a = 16.8975 (8) Åθ = 3.0–25.0º
b = 11.0467 (4) ŵ = 2.24 mm1
c = 7.3097 (3) ÅT = 293 (2) K
V = 1364.44 (10) Å3Prism, colorless
Z = 40.40 × 0.20 × 0.15 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer1237 independent reflections
Radiation source: fine-focus sealed tube901 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.055
T = 293(2) Kθmax = 25.0º
ω scansθmin = 3.0º
Absorption correction: empirical (using intensity measurements)(SADABS; Sheldrick, 1996)h = −19→13
Tmin = 0.830, Tmax = 1.000k = −13→8
3079 measured reflectionsl = −8→7

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.154  w = 1/[σ2(Fo2) + (0.0605P)2] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1237 reflectionsΔρmax = 0.62 e Å3
82 parametersΔρmin = −0.48 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.02672 (5)0.2500−0.08930 (13)0.0469 (4)
S10.10918 (11)0.59639 (14)−0.4058 (3)0.0696 (6)
S2−0.24789 (14)0.2500−0.1884 (4)0.0884 (10)
N10.0695 (3)0.3956 (5)−0.1985 (8)0.0658 (16)
N2−0.0875 (4)0.2500−0.1112 (11)0.073 (2)
N30.0549 (3)0.25000.1831 (8)0.0402 (15)
H3C0.00770.25000.24300.048*
N40.2239 (4)0.25000.2443 (9)0.060 (2)
H4C0.27290.25000.19640.072*
H4D0.22850.25000.36700.072*
C10.0871 (3)0.4790 (5)−0.2800 (8)0.0456 (14)
C2−0.1538 (5)0.2500−0.1416 (11)0.050 (2)
C30.0968 (3)0.1421 (6)0.2496 (9)0.0622 (17)
H3A0.06970.07020.20630.075*
H3B0.09560.14120.38220.075*
C40.1817 (3)0.1387 (5)0.1857 (9)0.0579 (17)
H4A0.20790.06820.23660.069*
H4B0.18330.13230.05340.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0334 (6)0.0679 (7)0.0394 (7)0.000−0.0036 (5)0.000
S10.0691 (12)0.0427 (9)0.0970 (15)−0.0117 (8)−0.0099 (11)0.0037 (8)
S20.0325 (14)0.185 (3)0.0474 (17)0.000−0.0027 (12)0.000
N10.057 (4)0.072 (4)0.068 (4)0.000 (3)−0.001 (3)0.028 (3)
N20.033 (4)0.129 (7)0.056 (5)0.000−0.007 (4)0.000
N30.027 (3)0.057 (4)0.037 (4)0.0000.000 (3)0.000
N40.033 (4)0.104 (6)0.044 (5)0.000−0.003 (4)0.000
C10.036 (3)0.055 (4)0.046 (4)0.009 (3)−0.009 (3)−0.014 (3)
C20.044 (6)0.078 (6)0.028 (5)0.0000.004 (4)0.000
C30.054 (4)0.076 (4)0.056 (4)−0.005 (3)−0.004 (4)0.015 (3)
C40.050 (4)0.066 (4)0.057 (4)0.014 (3)−0.007 (3)0.006 (3)

Geometric parameters (Å, °)

Zn1—N21.937 (8)N3—H3C0.9100
Zn1—N1i1.936 (5)N4—C41.484 (7)
Zn1—N11.936 (5)N4—C4i1.484 (7)
Zn1—N32.048 (6)N4—H4C0.9000
S1—C11.633 (7)N4—H4D0.9000
S2—C21.626 (9)C3—C41.509 (7)
N1—C11.136 (7)C3—H3A0.9700
N2—C21.143 (10)C3—H3B0.9700
N3—C3i1.469 (6)C4—H4A0.9700
N3—C31.469 (6)C4—H4B0.9700
N2—Zn1—N1i109.77 (18)C4—N4—H4D109.2
N2—Zn1—N1109.77 (18)C4i—N4—H4D109.2
N1i—Zn1—N1112.4 (3)H4C—N4—H4D107.9
N2—Zn1—N3108.2 (3)N1—C1—S1176.9 (6)
N1i—Zn1—N3108.30 (19)N2—C2—S2179.0 (8)
N1—Zn1—N3108.30 (19)N3—C3—C4112.1 (5)
C1—N1—Zn1170.9 (5)N3—C3—H3A109.2
C2—N2—Zn1173.5 (8)C4—C3—H3A109.2
C3i—N3—C3108.5 (6)N3—C3—H3B109.2
C3i—N3—Zn1115.7 (4)C4—C3—H3B109.2
C3—N3—Zn1115.7 (4)H3A—C3—H3B107.9
C3i—N3—H3C105.3N4—C4—C3110.3 (5)
C3—N3—H3C105.3N4—C4—H4A109.6
Zn1—N3—H3C105.3C3—C4—H4A109.6
C4—N4—C4i111.9 (6)N4—C4—H4B109.6
C4—N4—H4C109.2C3—C4—H4B109.6
C4i—N4—H4C109.2H4A—C4—H4B108.1

Symmetry codes: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4C···S1ii0.902.723.470 (6)141
N4—H4D···S2iii0.902.383.281 (7)175

Symmetry codes: (ii) −x+1/2, −y+1, z+1/2; (iii) x+1/2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2286).

References

  • Bie, H.-Y., Lu, J., Yu, J.-H., Xu, J.-Q., Zhao, K. & Zhang, X. (2005). J. Solid State Chem.178, 1445–1451.
  • Bruker (2000). APEX2, SAINT and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dai, J.-C., Wu, X.-T., Fu, Z.-Y., Cui, C.-P., Wu, S.-M., Du, W.-X., Wu, L.-M., Zhang, H.-H. & Sun, Q.-Q. (2002). Inorg. Chem.41, 1391–1396. [PubMed]
  • Gu, J.-Z., Lu, W.-G., Jiang, L., Zhou, H.-C. & Lu, T.-B. (2007). Inorg. Chem.46, 5835–5837. [PubMed]
  • Liu, Y.-Y., Yi, L., Ding, B., Huang, Y.-Q. & Cheng, P. (2007). Inorg. Chem. Commun.10, 517–519.
  • Ouyang, X.-M., Liu, D.-J., Okamura, T., Bu, H.-W., Sun, W.-Y., Tang, W.-X. & Ueyama, N. (2003). Dalton Trans. pp. 1836–1845.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Tao, J., Yin, X., Jiang, Y.-B., Yang, L.-F., Huang, R.-B. & Zheng, L.-S. (2003). Eur. J. Inorg. Chem. pp. 2678–2682.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography