PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m115.
Published online 2007 December 6. doi:  10.1107/S1600536807063829
PMCID: PMC2915068

Monoclinic modification of 1,1,3,3,5,5-hexa­methyl-cyclo-1,3,5-tris­tannathiane

Abstract

The asymmetric unit of the title compound, [Sn3(CH3)6S3], contains two molecules with twist-boat conformations. There are intermolecular S(...)H (2.929 Å), S(...)S (3.433 Å), S(...)C (3.465 Å) and C(...)H (2.898 Å) inter­actions in addition to prominent intermolecular Sn(...)S inter­actions of 3.692 and 3.769 Å.

Related literature

For related literature, see: Menzebach & Bleckmann (1975 [triangle]) (tetragonal form); Jacobsen & Krebs (1977 [triangle]) (monoclinic form); Farina et al. (2001 [triangle]) (tetragonal form); Spek (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m115-scheme1.jpg

Experimental

Crystal data

  • [Sn3(CH3)6S3]
  • M r = 542.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m115-efi1.jpg
  • a = 14.826 (1) Å
  • b = 12.814 (1) Å
  • c = 17.744 (1) Å
  • β = 108.706 (1)°
  • V = 3192.94 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.01 mm−1
  • T = 150 (2) K
  • 0.25 × 0.25 × 0.20 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing 1995 [triangle]) T min = 0.311, T max = 0.361
  • 78537 measured reflections
  • 9326 independent reflections
  • 8221 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.067
  • S = 1.15
  • 9326 reflections
  • 229 parameters
  • H-atom parameters constrained
  • Δρmax = 0.93 e Å−3
  • Δρmin = −1.69 e Å−3

Data collection: COLLECT (Nonius, 1997–2000 [triangle]); cell refinement: HKL and SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063829/sg2203sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063829/sg2203Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Authors are grateful to the CSIR, New Delhi, for financial assistance in the form of a JRF (AK) and a CSIR Project (NS).

supplementary crystallographic information

Comment

Tris(dimethyltin sulfide),1,1,3,3,5,5-hexamethyl-cyclo-1,3,5-tristannathiane was the unexpected product in our attempt to synthesizing dimethyltin(emda) (emda = 1-ethoxycarbonyl-1-methylcarbonyl-2,2-dithiolate) (see Experimental). The literature reports that the compound crystallizes in monoclinic (P21/c; Jacobsen & Krebs, 1977), tetragonal (P4; Menzebach & Bleckmann,1975) and tetragonal (P42212; Farina et al., 2001) modifications. The monoclinic modification was refined in the P21/c space group. However, the checking program PLATON (Spek, 2003) finds P21/n space group which is now being authenticated in the present study. In the monoclinic unit cell the molecules are linked by Sn···S interaction of 3.692 and 3.796 Å, S···H interaction of 2.929 Å, S···S interaction of 3.433 Å, S···C interaction of 3.465 Å and C···H interaction of 2.898 Å.

Experimental

To a stirring 20 ml me thanolic solution of K2emda(1 mmol) was added, 15 ml me thanolic solution of dimethyltin(IV) chloride (1 mmol). The mixture was additionally stirred for 2 h. Whole solvent was vacuum evaporated toobtain solid residue. To this 20 ml chloroform was added and suction filteredto discard KCl. The orange coloured solution thus obtained was layered with methanol to afford yellow crystals.

Figures

Fig. 1.
ORTEP plot of tris(dimethyltin sulfide) at the 30% probability level.
Fig. 2.
Unit cell packing of tris(dimethyltin sulfide) showing Sn···S, S···S, S···H, S···C and C···H interactions.

Crystal data

[Sn3(CH3)6S3]Dx = 2.257 Mg m3
Mr = 542.45Melting point: 148 K
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
a = 14.826 (1) ÅCell parameters from 24000 reflections
b = 12.814 (1) Åθ = 2.9–27.5º
c = 17.744 (1) ŵ = 5.01 mm1
β = 108.706 (1)ºT = 150 (2) K
V = 3192.94 (4) Å3Block, yellow
Z = 80.25 × 0.25 × 0.20 mm
F000 = 2016

Data collection

Nonius KappaCCD diffractometer9326 independent reflections
Radiation source: fine-focus sealed tube8221 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.046
T = 150(2) Kθmax = 30.1º
363 1.6 degree images with [var phi] andω scansθmin = 3.2º
Absorption correction: multi-scan(SORTAV; Blessing 1995)h = −19→20
Tmin = 0.311, Tmax = 0.361k = −17→18
78537 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.067  w = 1/[σ2(Fo2) + (0.0287P)2 + 3.7599P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.002
9326 reflectionsΔρmax = 0.93 e Å3
229 parametersΔρmin = −1.69 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.407801 (14)−0.393311 (15)0.330468 (12)0.02220 (5)
Sn20.292630 (16)−0.244657 (15)0.143631 (12)0.02433 (5)
Sn30.260380 (14)−0.539580 (15)0.143724 (12)0.02231 (5)
Sn40.595000 (14)0.105237 (15)0.215469 (13)0.02279 (5)
Sn50.775307 (14)0.255910 (15)0.373674 (12)0.02168 (5)
Sn60.784610 (16)−0.045519 (16)0.370081 (13)0.02807 (5)
S10.38690 (6)−0.21710 (6)0.28053 (5)0.02717 (15)
S20.34811 (6)−0.40429 (6)0.10117 (5)0.02742 (16)
S30.26038 (5)−0.48569 (6)0.27553 (4)0.02501 (14)
S40.73866 (6)0.00869 (6)0.23204 (5)0.02779 (15)
S50.74693 (8)0.10168 (6)0.44061 (5)0.03455 (19)
S60.63617 (6)0.28120 (6)0.25940 (5)0.02786 (15)
C10.5255 (3)−0.4688 (3)0.3101 (3)0.0405 (8)
H1A0.5840−0.43050.33740.061*
H1B0.5160−0.47050.25280.061*
H1C0.5306−0.54030.33060.061*
C20.4245 (3)−0.3748 (3)0.4546 (2)0.0427 (9)
H2A0.4120−0.44150.47640.064*
H2B0.3794−0.32220.46090.064*
H2C0.4896−0.35220.48320.064*
C30.1441 (2)−0.2544 (3)0.1283 (2)0.0361 (8)
H3A0.1203−0.18530.13600.054*
H3B0.1340−0.30320.16730.054*
H3C0.1100−0.27930.07440.054*
C40.3309 (3)−0.1254 (3)0.0757 (2)0.0411 (9)
H4A0.2846−0.12390.02200.062*
H4B0.3945−0.13980.07240.062*
H4C0.3313−0.05770.10140.062*
C50.1159 (2)−0.5364 (3)0.06916 (19)0.0285 (6)
H5A0.0969−0.60620.04720.043*
H5B0.1090−0.48690.02560.043*
H5C0.0753−0.51460.10030.043*
C60.3447 (2)−0.6776 (2)0.1555 (2)0.0298 (6)
H6A0.3090−0.73750.16550.045*
H6B0.4038−0.66930.20000.045*
H6C0.3598−0.68920.10630.045*
C70.5300 (3)0.1155 (3)0.0895 (2)0.0423 (9)
H7A0.50870.04610.06800.063*
H7B0.57630.14250.06550.063*
H7C0.47510.16270.07740.063*
C80.5078 (3)0.0398 (3)0.2777 (3)0.0429 (9)
H8A0.44530.07370.26030.064*
H8B0.53790.05060.33500.064*
H8C0.5001−0.03520.26650.064*
C90.7751 (3)0.3803 (2)0.4535 (2)0.0313 (7)
H9A0.78920.35260.50750.047*
H9B0.71230.41380.43710.047*
H9C0.82360.43180.45250.047*
C100.9028 (3)0.2408 (3)0.3437 (2)0.0364 (8)
H10A0.91760.30750.32330.055*
H10B0.89420.18690.30270.055*
H10C0.95540.22090.39120.055*
C110.6965 (3)−0.1716 (3)0.3834 (2)0.0416 (9)
H11A0.7122−0.23470.35890.062*
H11B0.6295−0.15370.35730.062*
H11C0.7075−0.18430.44010.062*
C120.9340 (3)−0.0702 (3)0.4128 (2)0.0425 (9)
H12A0.9538−0.08600.46980.064*
H12B0.9667−0.00720.40400.064*
H12C0.9503−0.12890.38420.064*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.02077 (10)0.02012 (10)0.02404 (10)0.00078 (7)0.00487 (8)0.00072 (7)
Sn20.02967 (11)0.01939 (10)0.02465 (10)0.00053 (7)0.00974 (8)0.00356 (7)
Sn30.02227 (10)0.01899 (9)0.02482 (10)0.00015 (7)0.00638 (8)−0.00101 (7)
Sn40.02074 (10)0.02090 (10)0.02697 (11)−0.00286 (7)0.00798 (8)−0.00433 (7)
Sn50.02387 (10)0.01951 (10)0.02113 (10)0.00017 (7)0.00645 (8)−0.00146 (7)
Sn60.03327 (12)0.01932 (10)0.02936 (11)−0.00007 (8)0.00690 (9)0.00062 (8)
S10.0324 (4)0.0176 (3)0.0293 (4)−0.0025 (3)0.0070 (3)−0.0022 (3)
S20.0326 (4)0.0234 (4)0.0311 (4)−0.0020 (3)0.0171 (3)−0.0019 (3)
S30.0253 (3)0.0250 (4)0.0266 (3)−0.0048 (3)0.0110 (3)−0.0019 (3)
S40.0304 (4)0.0268 (4)0.0287 (4)0.0056 (3)0.0129 (3)−0.0016 (3)
S50.0580 (6)0.0244 (4)0.0275 (4)0.0035 (3)0.0225 (4)0.0037 (3)
S60.0296 (4)0.0178 (3)0.0299 (4)0.0010 (3)0.0008 (3)0.0002 (3)
C10.0286 (17)0.040 (2)0.054 (2)0.0095 (15)0.0137 (16)0.0019 (17)
C20.053 (2)0.048 (2)0.0230 (16)−0.0027 (18)0.0071 (16)−0.0010 (15)
C30.0268 (17)0.0341 (18)0.043 (2)0.0044 (13)0.0058 (15)−0.0018 (14)
C40.064 (3)0.0281 (17)0.040 (2)0.0004 (17)0.0280 (19)0.0102 (14)
C50.0243 (14)0.0335 (16)0.0260 (15)0.0020 (12)0.0056 (12)0.0023 (12)
C60.0322 (16)0.0234 (14)0.0351 (16)0.0051 (12)0.0126 (13)0.0015 (12)
C70.038 (2)0.050 (2)0.0300 (18)0.0039 (16)−0.0020 (15)−0.0081 (15)
C80.0358 (19)0.042 (2)0.059 (2)−0.0133 (16)0.0270 (18)−0.0004 (17)
C90.0403 (18)0.0248 (15)0.0263 (15)0.0008 (13)0.0071 (14)−0.0085 (12)
C100.0282 (17)0.0370 (18)0.049 (2)0.0013 (13)0.0187 (15)0.0021 (15)
C110.051 (2)0.0274 (17)0.041 (2)−0.0122 (16)0.0082 (17)0.0065 (14)
C120.0344 (19)0.046 (2)0.039 (2)0.0020 (16)−0.0001 (15)−0.0160 (17)

Geometric parameters (Å, °)

Sn1—C12.125 (3)C3—H3A0.9800
Sn1—C22.149 (4)C3—H3B0.9800
Sn1—S32.4005 (8)C3—H3C0.9800
Sn1—S12.4090 (8)C4—H4A0.9800
Sn2—C42.133 (3)C4—H4B0.9800
Sn2—C32.133 (4)C4—H4C0.9800
Sn2—S12.4086 (8)C5—H5A0.9800
Sn2—S22.4136 (8)C5—H5B0.9800
Sn3—C52.126 (3)C5—H5C0.9800
Sn3—C62.136 (3)C6—H6A0.9800
Sn3—S22.4284 (8)C6—H6B0.9800
Sn3—S32.4386 (8)C6—H6C0.9800
Sn4—C82.123 (3)C7—H7A0.9800
Sn4—C72.135 (4)C7—H7B0.9800
Sn4—S42.3982 (8)C7—H7C0.9800
Sn4—S62.3999 (8)C8—H8A0.9800
Sn5—C102.131 (3)C8—H8B0.9800
Sn5—C92.133 (3)C8—H8C0.9800
Sn5—S62.4060 (8)C9—H9A0.9800
Sn5—S52.4112 (8)C9—H9B0.9800
Sn6—C122.121 (4)C9—H9C0.9800
Sn6—C112.138 (3)C10—H10A0.9800
Sn6—S42.4240 (8)C10—H10B0.9800
Sn6—S52.4259 (8)C10—H10C0.9800
C1—H1A0.9800C11—H11A0.9800
C1—H1B0.9800C11—H11B0.9800
C1—H1C0.9800C11—H11C0.9800
C2—H2A0.9800C12—H12A0.9800
C2—H2B0.9800C12—H12B0.9800
C2—H2C0.9800C12—H12C0.9800
C1—Sn1—C2113.19 (17)Sn2—C3—H3C109.5
C1—Sn1—S3113.37 (11)H3A—C3—H3C109.5
C2—Sn1—S3105.13 (12)H3B—C3—H3C109.5
C1—Sn1—S1112.33 (11)Sn2—C4—H4A109.5
C2—Sn1—S1103.44 (12)Sn2—C4—H4B109.5
S3—Sn1—S1108.66 (3)H4A—C4—H4B109.5
C4—Sn2—C3114.88 (16)Sn2—C4—H4C109.5
C4—Sn2—S1106.94 (12)H4A—C4—H4C109.5
C3—Sn2—S1112.25 (11)H4B—C4—H4C109.5
C4—Sn2—S2104.57 (11)Sn3—C5—H5A109.5
C3—Sn2—S2110.58 (10)Sn3—C5—H5B109.5
S1—Sn2—S2107.06 (3)H5A—C5—H5B109.5
C5—Sn3—C6121.18 (13)Sn3—C5—H5C109.5
C5—Sn3—S2109.01 (9)H5A—C5—H5C109.5
C6—Sn3—S2105.44 (9)H5B—C5—H5C109.5
C5—Sn3—S3106.35 (9)Sn3—C6—H6A109.5
C6—Sn3—S3108.70 (9)Sn3—C6—H6B109.5
S2—Sn3—S3105.12 (3)H6A—C6—H6B109.5
C8—Sn4—C7115.01 (17)Sn3—C6—H6C109.5
C8—Sn4—S4113.41 (12)H6A—C6—H6C109.5
C7—Sn4—S4104.21 (11)H6B—C6—H6C109.5
C8—Sn4—S6109.64 (11)Sn4—C7—H7A109.5
C7—Sn4—S6105.33 (11)Sn4—C7—H7B109.5
S4—Sn4—S6108.75 (3)H7A—C7—H7B109.5
C10—Sn5—C9115.11 (15)Sn4—C7—H7C109.5
C10—Sn5—S6113.04 (11)H7A—C7—H7C109.5
C9—Sn5—S6105.97 (10)H7B—C7—H7C109.5
C10—Sn5—S5110.93 (10)Sn4—C8—H8A109.5
C9—Sn5—S5104.36 (10)Sn4—C8—H8B109.5
S6—Sn5—S5106.72 (3)H8A—C8—H8B109.5
C12—Sn6—C11116.90 (17)Sn4—C8—H8C109.5
C12—Sn6—S4109.05 (12)H8A—C8—H8C109.5
C11—Sn6—S4110.17 (11)H8B—C8—H8C109.5
C12—Sn6—S5108.57 (10)Sn5—C9—H9A109.5
C11—Sn6—S5106.29 (12)Sn5—C9—H9B109.5
S4—Sn6—S5105.18 (3)H9A—C9—H9B109.5
Sn2—S1—Sn1101.43 (3)Sn5—C9—H9C109.5
Sn2—S2—Sn3103.76 (3)H9A—C9—H9C109.5
Sn1—S3—Sn3104.42 (3)H9B—C9—H9C109.5
Sn4—S4—Sn6102.86 (3)Sn5—C10—H10A109.5
Sn5—S5—Sn6106.13 (3)Sn5—C10—H10B109.5
Sn4—S6—Sn5101.96 (3)H10A—C10—H10B109.5
Sn1—C1—H1A109.5Sn5—C10—H10C109.5
Sn1—C1—H1B109.5H10A—C10—H10C109.5
H1A—C1—H1B109.5H10B—C10—H10C109.5
Sn1—C1—H1C109.5Sn6—C11—H11A109.5
H1A—C1—H1C109.5Sn6—C11—H11B109.5
H1B—C1—H1C109.5H11A—C11—H11B109.5
Sn1—C2—H2A109.5Sn6—C11—H11C109.5
Sn1—C2—H2B109.5H11A—C11—H11C109.5
H2A—C2—H2B109.5H11B—C11—H11C109.5
Sn1—C2—H2C109.5Sn6—C12—H12A109.5
H2A—C2—H2C109.5Sn6—C12—H12B109.5
H2B—C2—H2C109.5H12A—C12—H12B109.5
Sn2—C3—H3A109.5Sn6—C12—H12C109.5
Sn2—C3—H3B109.5H12A—C12—H12C109.5
H3A—C3—H3B109.5H12B—C12—H12C109.5

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2203).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Farina, Y., Baba, I., Othman, A. H., Razak, I. A., Fun, H.-K. & Ng, S. W. (2001). Acta Cryst. E57, m37–m38.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Jacobsen, H.-J. & Krebs, B. (1977). J. Organomet. Chem.136, 333–338.
  • Menzebach, B. & Bleckmann, P. (1975). J. Organomet. Chem.91, 291–294.
  • Nonius (1997–2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J Appl Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography