PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m111.
Published online 2007 December 6. doi:  10.1107/S1600536807063787
PMCID: PMC2915064

Poly[piperazinediium [aqua­bis(μ-pyridine-2,5-dicarboxyl­ato)zincate] dihydrate]

Abstract

The polymeric title compound, {(C4H12N2)[Zn(C7H3NO4)2(H2O)]·2H2O}n, was obtained by the reaction of zinc(II) nitrate hexa­hydrate with the proton-transfer compound (pipzH2)(py-2,5-dc) (where pipz is piperazine and py-2,5-dcH2 is pyridine-2,5-dicarboxylic acid) in aqueous solution. Each ZnII atom is coordinated in a distorted octa­hedral geometry by four O atoms and two N atoms from one water mol­ecule and two (py-2,5-dc)2– ligands, which also act as bridging ligands between ZnII atoms. π–π Stacking inter­actions between two aromatic rings of (py-2,5-dc)2– fragments, with centroid–centroid distances of 3.4747 (7) and 3.7081 (7) Å are observed. The crystal structure is stabilized by O—H(...)O and N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Aghabozorg et al. (2007 [triangle], 2007a [triangle],b [triangle]); Sheshmani et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m111-scheme1.jpg

Experimental

Crystal data

  • (C4H12N2)[Zn(C7H3NO4)2(H2O)]·2H2O
  • M r = 537.78
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m111-efi5.jpg
  • a = 13.1752 (5) Å
  • b = 11.9066 (5) Å
  • c = 13.6902 (5) Å
  • β = 100.567 (1)°
  • V = 2111.19 (14) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 100 (2) K
  • 0.24 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector’ diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.756, T max = 0.808
  • 26339 measured reflections
  • 6148 independent reflections
  • 5458 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.069
  • S = 1.03
  • 6148 reflections
  • 307 parameters
  • H-atom parameters constrained
  • Δρmax = 0.83 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2005 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063787/bt2642sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063787/bt2642Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Our research group has recently focused on one-pot synthesis of water soluble self-assembly systems that can function as suitable ligands in the synthesis of metal complexes (Aghabozorg et al., 2007, 2007a, 2007b).

The molecular structure of the title compound is shown in Fig. 1. The negative charge of the anionic complex is neutralized by dicationic piperazinediium species.

The ZnII atom is hexacoordinated by two nitrogen atoms, two O atoms from carboxylate groups of two (py-2,5-dc)2– fragments, one O atom from a bridging (py-2,5-dc)2– ligand and one O atom from a coordinated water molecule. O7 and O9 atoms occupy the axial positions, while N1, N2, O1 and O5 atoms form the equatorial plane. The O9—Zn1—O7i (i: -x + 1, y - 1/2, -z + 1/2) bond angle revealed ~7.6° deviation from linearity. There are two uncoordinated water molecules and one piperazinediium ion as counter-ion, with some hydrogen bonds to water molecules and coordinated COO- groups of (py-2,5-dc)2– fragments.

The (py-2,5-dc)2– fragments are bridging via carboxylate group, connecting the ZnII atoms together into a layered structure in which the space between the [Zn(H2O)(py-2,5-dc)2]2– species is filled by piperazinediium ions and water molecules (Fig. 2).

The dihedral angle between the aromatic rings of (py-2,5-dc)2– groups connected to the same Zn atom is 6.82 (6)°, indicating that these fragments are almost coparallel.

π-π stacking interactions between two aromatic rings of (py-2,5-dc)2–, with centroid-centroid distances of 3.4747 (7) Å (symmetry code: -x, 1/2 + y, 1/2 - z) and 3.7081 (7) Å (symmetry code: -x, -1 - y, -z) are observed in the title compound (Fig. 3).

Experimental

The proton transfer compound was prepared by a reaction between piperazineand pyridine-2,5-dicarboxylicacid (Sheshmani, et al., 2007). A solution of Zn(NO3)2.6H2O (130 mg, 0.5 mmol) in water (15 ml) was added to an aqueous solution of (pipzH2)(py-2,5-dc) (253 mg, 1.0 mmol) in water (15 ml) in a 1:2 molar ratio. Colorless crystals were obtained after a few days at room temperature.

Refinement

The hydrogen atoms of NH2 groups and water molecules were found in difference Fourier synthesis. Nevertheless, all hydrogen atoms were refined using a riding model with with the Uiso(H) parameters equal to 1.2 Ueq(C,N,O) and Caromatic—H = 0.95 Å, Cmethylene—H = 0.99 Å, O—H = 0.82Å and N—H = 0.92 Å.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.Atoms marked with a are related by the symmetry code: -x + 1, y - 1/2, -z + 1/2.
Fig. 2.
Packing diagram of the title compound, the space between [Zn(H2O)(py-2,5-dc)2]2– layers, is filled by piperazinediium ions and water molecules.
Fig. 3.
π-π Stacking interactions between aromatic rings of pyridine-2,5-dicarboxylate fragments with centroid-centroid distances of 3.4747 (7) Å (symmetry code: -x, 1/2 + y, 1/2 - z) and 3.7081 (7) Å (symmetry ...

Crystal data

(C4H12N2)[Zn(C7H3N1O4)2(H2O1)]·2H2OF000 = 1112
Mr = 537.78Dx = 1.692 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 583 reflections
a = 13.1752 (5) Åθ = 3–30º
b = 11.9066 (5) ŵ = 1.24 mm1
c = 13.6902 (5) ÅT = 100 (2) K
β = 100.5670 (10)ºPrism, colourless
V = 2111.19 (14) Å30.24 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector' diffractometer6148 independent reflections
Radiation source: fine-focus sealed tube5458 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
T = 100(2) Kθmax = 30.0º
ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2005)h = −18→18
Tmin = 0.756, Tmax = 0.808k = −16→16
26339 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.069  w = 1/[σ2(Fo2) + (0.0365P)2 + 1.P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
6148 reflectionsΔρmax = 0.83 e Å3
307 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.157893 (10)−0.413714 (11)0.162746 (10)0.00887 (5)
O10.22982 (7)−0.25877 (8)0.17492 (7)0.01233 (17)
O20.20008 (9)−0.07463 (9)0.15203 (11)0.0298 (3)
O3−0.32052 (7)−0.19745 (8)0.00316 (8)0.01648 (19)
O4−0.28405 (7)−0.37980 (8)0.01990 (8)0.01749 (19)
O50.30053 (7)−0.48325 (7)0.22242 (7)0.01115 (17)
O60.38201 (7)−0.64637 (8)0.26384 (8)0.0179 (2)
O7−0.11016 (7)−0.88980 (8)0.19126 (7)0.01188 (17)
O8−0.17065 (7)−0.73902 (8)0.10247 (7)0.01579 (19)
O90.18192 (7)−0.43941 (8)0.01814 (7)0.01400 (18)
H9A0.1826−0.3867−0.02030.017*
H9B0.2171−0.49170.00410.017*
N10.03069 (8)−0.30642 (9)0.10358 (8)0.00939 (19)
N20.11783 (8)−0.58497 (8)0.17585 (8)0.00904 (19)
C10.05938 (9)−0.19776 (10)0.10974 (9)0.0110 (2)
C2−0.01048 (10)−0.11078 (11)0.08528 (10)0.0135 (2)
H2A0.0123−0.03490.08950.016*
C3−0.11439 (10)−0.13610 (11)0.05445 (10)0.0134 (2)
H3A−0.1637−0.07770.03800.016*
C4−0.14516 (9)−0.24797 (10)0.04793 (9)0.0103 (2)
C5−0.06942 (9)−0.33022 (10)0.07249 (9)0.0099 (2)
H5A−0.0898−0.40680.06690.012*
C60.17291 (10)−0.17423 (11)0.14852 (10)0.0141 (2)
C7−0.25825 (9)−0.27880 (11)0.02066 (9)0.0116 (2)
C80.20087 (9)−0.65035 (10)0.20725 (9)0.0093 (2)
C90.19325 (9)−0.76566 (10)0.21772 (9)0.0109 (2)
H9C0.2534−0.81010.23770.013*
C100.09628 (9)−0.81510 (10)0.19858 (9)0.0108 (2)
H10A0.0892−0.89380.20640.013*
C110.00939 (9)−0.74839 (10)0.16771 (9)0.0094 (2)
C120.02468 (9)−0.63331 (10)0.15639 (9)0.0100 (2)
H12A−0.0338−0.58730.13380.012*
C130.30435 (9)−0.59080 (10)0.23404 (9)0.0104 (2)
C14−0.09852 (9)−0.79664 (10)0.15208 (9)0.0101 (2)
N30.35861 (8)−0.31370 (9)0.36536 (8)0.0119 (2)
H3B0.2960−0.28630.37540.014*
H3C0.3469−0.35640.30840.014*
N40.49509 (8)−0.22071 (9)0.53234 (8)0.0123 (2)
H4A0.5059−0.17770.58920.015*
H4B0.5580−0.24800.52330.015*
C150.42751 (10)−0.21754 (11)0.35168 (10)0.0149 (2)
H15A0.3933−0.16960.29620.018*
H15B0.4926−0.24630.33470.018*
C160.45104 (10)−0.14881 (11)0.44632 (10)0.0150 (2)
H16A0.5008−0.08860.43840.018*
H16B0.3869−0.11290.45880.018*
C170.42647 (10)−0.31659 (11)0.54554 (10)0.0136 (2)
H17A0.3609−0.28790.56160.016*
H17B0.4602−0.36420.60140.016*
C180.40415 (10)−0.38587 (11)0.45105 (10)0.0135 (2)
H18A0.4689−0.42020.43840.016*
H18B0.3555−0.44710.45890.016*
O1W0.37141 (7)0.04431 (8)0.14623 (7)0.01687 (19)
H1WA0.34910.09390.10650.020*
H1WB0.32220.00280.14860.020*
O2W0.50510 (8)0.07757 (9)0.31667 (8)0.0206 (2)
H2WA0.46100.06680.26690.025*
H2WB0.55940.05160.30520.025*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.00708 (7)0.00737 (7)0.01160 (7)−0.00038 (5)0.00023 (5)−0.00018 (5)
O10.0093 (4)0.0106 (4)0.0159 (4)−0.0009 (3)−0.0006 (3)0.0007 (3)
O20.0161 (5)0.0113 (5)0.0573 (8)−0.0044 (4)−0.0058 (5)0.0039 (5)
O30.0096 (4)0.0164 (5)0.0234 (5)0.0031 (3)0.0029 (4)0.0053 (4)
O40.0101 (4)0.0143 (4)0.0279 (5)0.0001 (3)0.0030 (4)−0.0020 (4)
O50.0089 (4)0.0092 (4)0.0148 (4)−0.0007 (3)0.0008 (3)−0.0009 (3)
O60.0098 (4)0.0143 (4)0.0277 (5)0.0015 (3)−0.0013 (4)0.0024 (4)
O70.0132 (4)0.0094 (4)0.0134 (4)−0.0020 (3)0.0035 (3)0.0006 (3)
O80.0097 (4)0.0159 (5)0.0209 (5)−0.0020 (3)0.0001 (3)0.0068 (4)
O90.0179 (5)0.0108 (4)0.0140 (4)0.0025 (3)0.0045 (3)0.0017 (3)
N10.0086 (4)0.0095 (5)0.0100 (5)0.0000 (3)0.0015 (4)−0.0007 (4)
N20.0090 (5)0.0088 (4)0.0094 (4)−0.0001 (3)0.0019 (4)−0.0004 (3)
C10.0103 (5)0.0105 (5)0.0118 (5)−0.0009 (4)0.0010 (4)0.0002 (4)
C20.0144 (6)0.0083 (5)0.0169 (6)0.0002 (4)0.0005 (5)0.0005 (4)
C30.0124 (5)0.0114 (6)0.0161 (6)0.0030 (4)0.0014 (4)0.0003 (4)
C40.0091 (5)0.0126 (5)0.0095 (5)0.0014 (4)0.0022 (4)0.0006 (4)
C50.0096 (5)0.0097 (5)0.0103 (5)0.0000 (4)0.0014 (4)−0.0003 (4)
C60.0115 (5)0.0118 (5)0.0182 (6)−0.0019 (4)0.0002 (5)0.0011 (5)
C70.0083 (5)0.0156 (6)0.0110 (5)0.0009 (4)0.0024 (4)0.0002 (4)
C80.0082 (5)0.0110 (5)0.0087 (5)0.0000 (4)0.0020 (4)−0.0009 (4)
C90.0097 (5)0.0103 (5)0.0126 (5)0.0016 (4)0.0021 (4)0.0002 (4)
C100.0127 (5)0.0082 (5)0.0117 (5)−0.0003 (4)0.0025 (4)−0.0001 (4)
C110.0093 (5)0.0098 (5)0.0093 (5)−0.0011 (4)0.0027 (4)−0.0007 (4)
C120.0085 (5)0.0105 (5)0.0108 (5)−0.0003 (4)0.0014 (4)0.0003 (4)
C130.0093 (5)0.0116 (5)0.0103 (5)−0.0007 (4)0.0019 (4)−0.0011 (4)
C140.0099 (5)0.0102 (5)0.0107 (5)−0.0019 (4)0.0034 (4)−0.0014 (4)
N30.0084 (4)0.0138 (5)0.0125 (5)0.0001 (4)−0.0004 (4)−0.0021 (4)
N40.0085 (4)0.0145 (5)0.0134 (5)−0.0015 (4)0.0008 (4)−0.0031 (4)
C150.0136 (6)0.0173 (6)0.0134 (6)−0.0029 (5)0.0013 (5)0.0012 (5)
C160.0150 (6)0.0116 (6)0.0175 (6)−0.0013 (4)0.0007 (5)0.0000 (5)
C170.0116 (5)0.0161 (6)0.0130 (6)−0.0028 (4)0.0019 (4)0.0001 (5)
C180.0123 (5)0.0111 (5)0.0161 (6)−0.0005 (4)0.0001 (4)0.0000 (4)
O1W0.0133 (4)0.0167 (5)0.0195 (5)−0.0004 (4)0.0002 (4)0.0024 (4)
O2W0.0142 (5)0.0265 (5)0.0203 (5)0.0045 (4)0.0007 (4)−0.0099 (4)

Geometric parameters (Å, °)

Zn1—O12.0668 (9)C8—C131.5208 (17)
Zn1—O52.0788 (9)C9—C101.3874 (17)
Zn1—O92.0840 (9)C9—H9C0.9500
Zn1—N22.1222 (10)C10—C111.3938 (17)
Zn1—N12.1445 (10)C10—H10A0.9500
Zn1—O7i2.2209 (9)C11—C121.3976 (16)
O1—C61.2675 (16)C11—C141.5119 (16)
O2—C61.2372 (16)C12—H12A0.9500
O3—C71.2636 (15)N3—C181.4888 (17)
O4—C71.2492 (16)N3—C151.4941 (17)
O5—C131.2903 (15)N3—H3B0.9201
O6—C131.2239 (15)N3—H3C0.9200
O7—C141.2536 (15)N4—C161.4852 (17)
O7—Zn1ii2.2209 (9)N4—C171.4877 (16)
O8—C141.2643 (15)N4—H4A0.9200
O9—H9A0.8200N4—H4B0.9199
O9—H9B0.8199C15—C161.5156 (18)
N1—C51.3399 (15)C15—H15A0.9900
N1—C11.3461 (16)C15—H15B0.9900
N2—C121.3374 (15)C16—H16A0.9900
N2—C81.3472 (15)C16—H16B0.9900
C1—C21.3852 (17)C17—C181.5167 (18)
C1—C61.5187 (17)C17—H17A0.9900
C2—C31.3898 (18)C17—H17B0.9900
C2—H2A0.9500C18—H18A0.9900
C3—C41.3904 (17)C18—H18B0.9900
C3—H3A0.9500O1W—H1WA0.8200
C4—C51.3946 (16)O1W—H1WB0.8200
C4—C71.5133 (17)O2W—H2WA0.8200
C5—H5A0.9500O2W—H2WB0.8199
C8—C91.3859 (17)
O1—Zn1—O587.46 (3)C9—C10—C11119.48 (11)
O1—Zn1—O993.46 (4)C9—C10—H10A120.3
O5—Zn1—O991.78 (4)C11—C10—H10A120.3
O1—Zn1—N2165.55 (4)C10—C11—C12117.73 (11)
O5—Zn1—N278.76 (4)C10—C11—C14121.67 (11)
O9—Zn1—N291.30 (4)C12—C11—C14120.52 (11)
O1—Zn1—N179.27 (4)N2—C12—C11123.05 (11)
O5—Zn1—N1166.71 (4)N2—C12—H12A118.5
O9—Zn1—N188.45 (4)C11—C12—H12A118.5
N2—Zn1—N1114.52 (4)O6—C13—O5126.08 (12)
O1—Zn1—O7i90.82 (4)O6—C13—C8119.08 (11)
O5—Zn1—O7i94.71 (3)O5—C13—C8114.84 (10)
O9—Zn1—O7i172.38 (4)O7—C14—O8124.83 (11)
N2—Zn1—O7i86.06 (4)O7—C14—C11117.47 (11)
N1—Zn1—O7i86.15 (4)O8—C14—C11117.67 (11)
C6—O1—Zn1116.57 (8)C18—N3—C15112.01 (10)
C13—O5—Zn1117.11 (8)C18—N3—H3B109.2
C14—O7—Zn1ii125.14 (8)C15—N3—H3B109.2
Zn1—O9—H9A121.2C18—N3—H3C109.2
Zn1—O9—H9B121.7C15—N3—H3C109.2
H9A—O9—H9B111.0H3B—N3—H3C107.9
C5—N1—C1118.15 (10)C16—N4—C17112.39 (10)
C5—N1—Zn1130.51 (8)C16—N4—H4A109.1
C1—N1—Zn1110.97 (8)C17—N4—H4A109.1
C12—N2—C8118.47 (10)C16—N4—H4B109.1
C12—N2—Zn1129.05 (8)C17—N4—H4B109.1
C8—N2—Zn1112.47 (8)H4A—N4—H4B107.9
N1—C1—C2122.48 (11)N3—C15—C16109.90 (10)
N1—C1—C6116.52 (11)N3—C15—H15A109.7
C2—C1—C6120.98 (11)C16—C15—H15A109.7
C1—C2—C3119.02 (12)N3—C15—H15B109.7
C1—C2—H2A120.5C16—C15—H15B109.7
C3—C2—H2A120.5H15A—C15—H15B108.2
C2—C3—C4119.13 (11)N4—C16—C15110.83 (11)
C2—C3—H3A120.4N4—C16—H16A109.5
C4—C3—H3A120.4C15—C16—H16A109.5
C3—C4—C5118.03 (11)N4—C16—H16B109.5
C3—C4—C7120.70 (11)C15—C16—H16B109.5
C5—C4—C7121.19 (11)H16A—C16—H16B108.1
N1—C5—C4123.18 (11)N4—C17—C18109.93 (10)
N1—C5—H5A118.4N4—C17—H17A109.7
C4—C5—H5A118.4C18—C17—H17A109.7
O2—C6—O1126.75 (12)N4—C17—H17B109.7
O2—C6—C1116.73 (12)C18—C17—H17B109.7
O1—C6—C1116.51 (11)H17A—C17—H17B108.2
O4—C7—O3124.76 (12)N3—C18—C17110.19 (10)
O4—C7—C4119.32 (11)N3—C18—H18A109.6
O3—C7—C4115.88 (11)C17—C18—H18A109.6
N2—C8—C9122.37 (11)N3—C18—H18B109.6
N2—C8—C13116.57 (10)C17—C18—H18B109.6
C9—C8—C13121.04 (11)H18A—C18—H18B108.1
C8—C9—C10118.85 (11)H1WA—O1W—H1WB105.7
C8—C9—H9C120.6H2WA—O2W—H2WB107.0
C10—C9—H9C120.6
O5—Zn1—O1—C6−178.14 (10)C7—C4—C5—N1−175.31 (11)
O9—Zn1—O1—C690.24 (10)Zn1—O1—C6—O2178.27 (13)
N2—Zn1—O1—C6−160.74 (14)Zn1—O1—C6—C1−0.95 (15)
N1—Zn1—O1—C62.47 (9)N1—C1—C6—O2178.30 (13)
O7i—Zn1—O1—C6−83.46 (9)C2—C1—C6—O2−3.7 (2)
O1—Zn1—O5—C13179.97 (9)N1—C1—C6—O1−2.41 (17)
O9—Zn1—O5—C13−86.64 (9)C2—C1—C6—O1175.64 (12)
N2—Zn1—O5—C134.33 (9)C3—C4—C7—O4−176.67 (12)
N1—Zn1—O5—C13−177.44 (14)C5—C4—C7—O4−0.21 (18)
O7i—Zn1—O5—C1389.35 (9)C3—C4—C7—O31.13 (17)
O1—Zn1—N1—C5−176.42 (11)C5—C4—C7—O3177.58 (11)
O5—Zn1—N1—C5−179.05 (13)C12—N2—C8—C91.56 (18)
O9—Zn1—N1—C589.77 (11)Zn1—N2—C8—C9−177.67 (9)
N2—Zn1—N1—C5−0.96 (12)C12—N2—C8—C13−176.63 (11)
O7i—Zn1—N1—C5−84.85 (11)Zn1—N2—C8—C134.14 (13)
O1—Zn1—N1—C1−3.59 (8)N2—C8—C9—C10−2.33 (18)
O5—Zn1—N1—C1−6.2 (2)C13—C8—C9—C10175.78 (11)
O9—Zn1—N1—C1−97.41 (9)C8—C9—C10—C111.14 (18)
N2—Zn1—N1—C1171.87 (8)C9—C10—C11—C120.67 (18)
O7i—Zn1—N1—C187.97 (8)C9—C10—C11—C14−176.08 (11)
O1—Zn1—N2—C12158.72 (13)C8—N2—C12—C110.41 (18)
O5—Zn1—N2—C12176.45 (11)Zn1—N2—C12—C11179.49 (9)
O9—Zn1—N2—C12−92.00 (11)C10—C11—C12—N2−1.51 (18)
N1—Zn1—N2—C12−3.11 (12)C14—C11—C12—N2175.29 (11)
O7i—Zn1—N2—C1280.84 (11)Zn1—O5—C13—O6176.62 (11)
O1—Zn1—N2—C8−22.2 (2)Zn1—O5—C13—C8−3.37 (13)
O5—Zn1—N2—C8−4.43 (8)N2—C8—C13—O6179.33 (12)
O9—Zn1—N2—C887.12 (8)C9—C8—C13—O61.12 (18)
N1—Zn1—N2—C8176.02 (8)N2—C8—C13—O5−0.67 (16)
O7i—Zn1—N2—C8−100.03 (8)C9—C8—C13—O5−178.89 (11)
C5—N1—C1—C20.03 (18)Zn1ii—O7—C14—O8−82.76 (15)
Zn1—N1—C1—C2−173.79 (10)Zn1ii—O7—C14—C1195.54 (12)
C5—N1—C1—C6178.04 (11)C10—C11—C14—O718.00 (17)
Zn1—N1—C1—C64.23 (13)C12—C11—C14—O7−158.66 (11)
N1—C1—C2—C30.9 (2)C10—C11—C14—O8−163.58 (12)
C6—C1—C2—C3−177.05 (12)C12—C11—C14—O819.76 (17)
C1—C2—C3—C4−0.72 (19)C18—N3—C15—C16−56.65 (14)
C2—C3—C4—C5−0.27 (18)C17—N4—C16—C15−56.30 (14)
C2—C3—C4—C7176.29 (12)N3—C15—C16—N455.00 (14)
C1—N1—C5—C4−1.11 (18)C16—N4—C17—C1856.56 (14)
Zn1—N1—C5—C4171.29 (9)C15—N3—C18—C1757.58 (13)
C3—C4—C5—N11.24 (18)N4—C17—C18—N3−56.24 (13)

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.821.932.730 (1)167
O1W—H1WB···O20.821.862.678 (2)173
O2W—H2WA···O1W0.821.872.682 (1)174
N3—H3B···O8iv0.921.822.741 (1)177
N3—H3C···O10.922.462.912 (1)111
N3—H3C···O50.921.942.818 (1)158
O2W—H2WB···O5v0.821.992.805 (1)170
N4—H4A···O2Wvi0.921.782.679 (2)164
N4—H4B···O3vii0.921.792.714 (1)179
O9—H9A···O8viii0.821.862.678 (1)173
O9—H9B···O4viii0.821.832.640 (1)172

Symmetry codes: (iii) −x, −y, −z; (iv) −x, y+1/2, −z+1/2; (v) −x+1, y+1/2, −z+1/2; (vi) −x+1, −y, −z+1; (vii) x+1, −y−1/2, z+1/2; (viii) −x, −y−1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2642).

References

  • Aghabozorg, H., Attar Gharamaleki, J., Ghadermazi, M., Ghasemikhah, P. & Soleimannejad, J. (2007a). Acta Cryst. E63, m1803–m1804.
  • Aghabozorg, H., Attar Gharamaleki, J., Ghasemikhah, P., Ghadermazi, M. & Soleimannejad, J. (2007b). Acta Cryst. E63, m1710–m1711.
  • Aghabozorg, H., Daneshvar, S., Motyeian, E., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2468–m2469.
  • Bruker (2005). APEX2 (Version 2.0-1), SAINT (Version 7.23A), SADABS (Version 2004/1) and SHELXTL (Version 6.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheshmani, S., Aghabozorg, H. & Ghadermazi, M. (2007). Acta Cryst. E63, o2869.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography