PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m110.
Published online 2007 December 6. doi:  10.1107/S1600536807064744
PMCID: PMC2915063

catena-Poly[[silver(I)-μ-N-(3-pyridyl­meth­yl)pyridine-4-carboxamide] nitrate monohydrate]

Abstract

In the title compound, {[Ag(C12H11N3O)]NO3·H2O}n, the Ag atom is coordinated by two N atoms from the heterocyclic ligand, giving a linear polycationic chain. Two long Ag(...)Onitrate inter­actions [2.667 (3) and 2.840 (3) Å] result in a three-dimensional network. The water mol­ecule consolidates the network structure by forming hydrogen bonds, one to the polycationic chain and one to the nitrate anion.

Related literature

For related literature, see: Cordes & Hanton (2007 [triangle]); Kumar et al. (2006 [triangle]); Tong et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m110-scheme1.jpg

Experimental

Crystal data

  • [Ag(C12H11N3O)]NO3·H2O
  • M r = 401.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m110-efi1.jpg
  • a = 12.177 (2) Å
  • b = 13.022 (3) Å
  • c = 8.9109 (18) Å
  • β = 94.21 (3)°
  • V = 1409.2 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.46 mm−1
  • T = 293 (2) K
  • 0.6 × 0.4 × 0.2 mm

Data collection

  • Rigaku Mercury CCD diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2003 [triangle]) T min = 0.503, T max = 0.742
  • 14304 measured reflections
  • 3230 independent reflections
  • 2399 reflections with I > 2σ(I)
  • R int = 0.065

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.101
  • S = 1.06
  • 3230 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2003 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Sheldrick, 1999 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064744/pk2069sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064744/pk2069Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The reactions of silver(I) salts with flexible pyridyl type ligands have received considerable attention (Cordes et al., 2007; Kumar et al., 2006; Tong et al., 2002). Here, we report a new silver(I) complex (Fig. 1), which was prepared by the reaction of N-(3-pyridinylmethyl)-4-pyridine-carboxamide acting as a bidentate bridge ligand with AgNO3. In the cation, the Ag(I) atom is in a linear coordination environment and the Ag1—N1A and Ag1—N3 bond length are 2.152 (3) and 2.157 (3) Å, respectively. The N3—Ag1—N1i (i = -1 + x, 0.5 - y, 1/2 + z) bond angle is 172.55 (15) °, indicating that the N–Ag–N skeleton that gives rise to a chain structure is distorted by the presence of two Ag···Onitrate interactions. If these are regarded as formal bonds, the compound may be described as a three dimensional network structure (Fig. 2).

Experimental

An aqueous solution (5 ml) of silver nitrate (1.0 mmol) was layered carefully over a methanol (5 ml) solution of N-(4-pyridylmethyl)-4-pyridinecarboxamide (1.0 mmol) in a tube, which was covered and kept away from light. Colorless crystals were obtained after two weeks. These were washed with methanol and collected in 50% yield. CHN elemental analysis: found C 35.86, H 3.55, N 13.79%; calc. for C12H13AgN4O5: C 35.93, H 3.27, N 13.96%.

Refinement

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93–0.97 Å, N—H distances of 0.86 Å and OW1—H distances of 0.85 Å, and with Uiso(H) = 1.2Ueq(C, N or O).

Figures

Fig. 1.
The structure of the title complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry-generated atoms in the plot are related by (-1 + x, 0.5 - y, 1/2 + z).
Fig. 2.
Crystal packing viewed down the c axis.

Crystal data

[Ag(C12H11N3O)]NO3·H2OF000 = 800
Mr = 401.13Dx = 1.891 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5866 reflections
a = 12.177 (2) Åθ = 3.2–27.5º
b = 13.022 (3) ŵ = 1.46 mm1
c = 8.9109 (18) ÅT = 293 (2) K
β = 94.21 (3)ºBlock, colorless
V = 1409.2 (5) Å30.6 × 0.4 × 0.2 mm
Z = 4

Data collection

Rigaku Mercury CCD diffractometer3230 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.065
T = 293(2) Kθmax = 27.5º
ω scansθmin = 3.1º
Absorption correction: multi-scan(CrystalClear; Rigaku/MSC, 2003)h = −15→15
Tmin = 0.503, Tmax = 0.742k = −16→16
14304 measured reflectionsl = −11→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.101  w = 1/[σ2(Fo2) + (0.0433P)2 + 0.2355P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3230 reflectionsΔρmax = 0.35 e Å3
199 parametersΔρmin = −0.43 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ag1−0.01568 (2)0.32484 (2)0.11987 (4)0.04917 (14)
N30.1306 (2)0.3030 (2)0.0011 (3)0.0377 (7)
C90.1867 (3)0.3832 (3)−0.0444 (4)0.0453 (9)
H9A0.16440.4486−0.01760.054*
C70.2524 (3)0.1954 (3)−0.1219 (4)0.0426 (9)
H7A0.27310.1291−0.14670.051*
C80.1637 (3)0.2107 (3)−0.0387 (4)0.0448 (9)
H8A0.12490.1537−0.00870.054*
C110.3109 (3)0.2785 (3)−0.1690 (4)0.0321 (7)
C100.2755 (3)0.3746 (3)−0.1283 (4)0.0418 (9)
H10A0.31200.4331−0.15800.050*
C120.4107 (3)0.2716 (3)−0.2571 (4)0.0348 (8)
N40.4370 (2)0.1789 (2)−0.3061 (3)0.0396 (7)
H4A0.39620.1273−0.28720.047*
C130.5327 (3)0.1630 (3)−0.3904 (4)0.0444 (9)
H13A0.54310.2231−0.45200.053*
H13B0.51880.1051−0.45760.053*
C40.6375 (3)0.1431 (3)−0.2938 (4)0.0335 (8)
C50.7368 (3)0.1578 (3)−0.3533 (4)0.0358 (8)
H5A0.73650.1849−0.44990.043*
N10.8337 (2)0.1358 (2)−0.2817 (3)0.0387 (7)
C10.8340 (3)0.0972 (3)−0.1428 (4)0.0472 (9)
H1B0.90070.0798−0.09170.057*
C20.7385 (3)0.0825 (3)−0.0737 (4)0.0485 (10)
H2A0.74100.05770.02430.058*
C30.6391 (3)0.1044 (3)−0.1492 (4)0.0413 (9)
H3A0.57380.0933−0.10380.050*
O10.4653 (2)0.3480 (2)−0.2803 (3)0.0550 (8)
O2−0.0055 (2)0.1263 (3)0.1929 (4)0.0669 (8)
N2−0.0802 (3)0.0813 (3)0.2490 (3)0.0427 (7)
O3−0.1439 (3)0.1264 (3)0.3279 (4)0.0735 (9)
O1W0.6452 (2)0.4755 (2)−0.2057 (4)0.0624 (8)
H1WA0.59320.4332−0.22670.075*
H1WB0.70330.4393−0.19280.075*
O4−0.0959 (3)−0.0117 (2)0.2228 (4)0.0702 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ag10.03123 (18)0.0563 (2)0.0621 (2)0.00455 (13)0.01775 (14)−0.00438 (15)
N30.0300 (16)0.0400 (18)0.0435 (18)0.0011 (13)0.0066 (13)−0.0052 (13)
C90.042 (2)0.034 (2)0.061 (3)0.0054 (17)0.0109 (19)−0.0029 (18)
C70.041 (2)0.033 (2)0.057 (2)−0.0023 (16)0.0209 (18)−0.0077 (16)
C80.039 (2)0.043 (2)0.055 (2)−0.0071 (17)0.0197 (18)−0.0027 (18)
C110.0277 (17)0.0366 (19)0.0319 (18)0.0012 (15)0.0013 (14)0.0008 (14)
C100.039 (2)0.035 (2)0.053 (2)−0.0021 (17)0.0105 (17)0.0004 (17)
C120.0267 (18)0.042 (2)0.0363 (19)−0.0045 (16)0.0048 (14)−0.0007 (16)
N40.0270 (15)0.0483 (19)0.0448 (18)−0.0020 (13)0.0127 (13)−0.0045 (14)
C130.032 (2)0.062 (3)0.041 (2)0.0028 (18)0.0105 (16)−0.0027 (17)
C40.0324 (19)0.0360 (18)0.0324 (18)0.0020 (15)0.0060 (15)−0.0046 (14)
C50.0305 (18)0.041 (2)0.0373 (19)0.0019 (15)0.0103 (15)0.0014 (15)
N10.0285 (16)0.0443 (17)0.0447 (18)−0.0018 (14)0.0108 (13)0.0025 (14)
C10.036 (2)0.056 (3)0.050 (2)0.0012 (18)0.0028 (17)0.0017 (19)
C20.045 (2)0.066 (3)0.036 (2)0.002 (2)0.0075 (17)0.0058 (18)
C30.037 (2)0.048 (2)0.041 (2)−0.0032 (17)0.0150 (16)−0.0004 (17)
O10.0404 (16)0.0537 (17)0.073 (2)−0.0142 (13)0.0212 (14)−0.0028 (14)
O20.055 (2)0.068 (2)0.080 (2)−0.0126 (16)0.0235 (16)0.0100 (18)
N20.0371 (18)0.050 (2)0.0413 (18)−0.0045 (15)0.0028 (14)0.0039 (15)
O30.066 (2)0.076 (2)0.082 (2)−0.0028 (18)0.0310 (18)−0.0178 (18)
O1W0.0471 (17)0.0461 (17)0.094 (2)−0.0057 (14)0.0067 (15)−0.0046 (15)
O40.068 (2)0.0443 (18)0.098 (3)−0.0020 (16)0.0053 (18)0.0006 (16)

Geometric parameters (Å, °)

Ag1—N1i2.152 (3)C13—H13A0.9700
Ag1—N32.157 (3)C13—H13B0.9700
N3—C81.324 (5)C4—C51.369 (5)
N3—C91.328 (5)C4—C31.382 (5)
C9—C101.363 (5)C5—N11.331 (4)
C9—H9A0.9300C5—H5A0.9300
C7—C81.369 (5)N1—C11.336 (5)
C7—C111.378 (5)N1—Ag1ii2.152 (3)
C7—H7A0.9300C1—C21.368 (5)
C8—H8A0.9300C1—H1B0.9300
C11—C101.381 (5)C2—C31.370 (5)
C11—C121.497 (5)C2—H2A0.9300
C10—H10A0.9300C3—H3A0.9300
C12—O11.222 (4)O2—N21.220 (4)
C12—N41.331 (4)N2—O31.234 (4)
N4—C131.447 (5)N2—O41.245 (4)
N4—H4A0.8600O1W—H1WA0.8499
C13—C41.508 (5)O1W—H1WB0.8500
N1i—Ag1—N3172.19 (11)C4—C13—H13A108.7
C8—N3—C9117.3 (3)N4—C13—H13B108.7
C8—N3—Ag1122.0 (2)C4—C13—H13B108.7
C9—N3—Ag1120.5 (2)H13A—C13—H13B107.6
N3—C9—C10123.3 (3)C5—C4—C3117.3 (3)
N3—C9—H9A118.3C5—C4—C13119.3 (3)
C10—C9—H9A118.3C3—C4—C13123.3 (3)
C8—C7—C11119.8 (3)N1—C5—C4124.2 (3)
C8—C7—H7A120.1N1—C5—H5A117.9
C11—C7—H7A120.1C4—C5—H5A117.9
N3—C8—C7123.0 (3)C5—N1—C1117.8 (3)
N3—C8—H8A118.5C5—N1—Ag1ii120.4 (2)
C7—C8—H8A118.5C1—N1—Ag1ii121.6 (2)
C7—C11—C10117.0 (3)N1—C1—C2121.7 (4)
C7—C11—C12124.8 (3)N1—C1—H1B119.2
C10—C11—C12118.3 (3)C2—C1—H1B119.2
C9—C10—C11119.6 (4)C1—C2—C3120.0 (4)
C9—C10—H10A120.2C1—C2—H2A120.0
C11—C10—H10A120.2C3—C2—H2A120.0
O1—C12—N4122.4 (3)C2—C3—C4119.0 (3)
O1—C12—C11120.8 (3)C2—C3—H3A120.5
N4—C12—C11116.8 (3)C4—C3—H3A120.5
C12—N4—C13121.5 (3)O2—N2—O3121.6 (4)
C12—N4—H4A119.2O2—N2—O4119.9 (4)
C13—N4—H4A119.2O3—N2—O4118.4 (3)
N4—C13—C4114.1 (3)H1WA—O1W—H1WB105.6
N4—C13—H13A108.7
C8—N3—C9—C10−0.2 (6)C11—C12—N4—C13−179.1 (3)
Ag1—N3—C9—C10−175.6 (3)C12—N4—C13—C487.7 (4)
C9—N3—C8—C70.6 (6)N4—C13—C4—C5−160.2 (3)
Ag1—N3—C8—C7175.9 (3)N4—C13—C4—C323.9 (5)
C11—C7—C8—N3−0.5 (7)C3—C4—C5—N11.0 (5)
C8—C7—C11—C10−0.1 (6)C13—C4—C5—N1−175.1 (3)
C8—C7—C11—C12178.4 (4)C4—C5—N1—C1−0.2 (5)
N3—C9—C10—C11−0.3 (6)C4—C5—N1—Ag1ii−174.5 (3)
C7—C11—C10—C90.4 (6)C5—N1—C1—C2−1.5 (6)
C12—C11—C10—C9−178.1 (3)Ag1ii—N1—C1—C2172.8 (3)
C7—C11—C12—O1−171.7 (4)N1—C1—C2—C32.2 (6)
C10—C11—C12—O16.7 (5)C1—C2—C3—C4−1.3 (6)
C7—C11—C12—N47.3 (6)C5—C4—C3—C2−0.3 (5)
C10—C11—C12—N4−174.2 (3)C13—C4—C3—C2175.7 (4)
O1—C12—N4—C130.0 (6)

Symmetry codes: (i) x−1, −y+1/2, z+1/2; (ii) x+1, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4A···O1Wiii0.862.042.837 (4)154
O1W—H1WA···O10.851.942.790 (4)174
O1W—H1WB···O3ii0.852.042.886 (4)171

Symmetry codes: (iii) −x+1, y−1/2, −z−1/2; (ii) x+1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2069).

References

  • Cordes, D. B. & Hanton, L. R. (2007). Inorg. Chem.46, 1634–1644. [PubMed]
  • Kumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des.6, 1903–1909.
  • Rigaku/MSC (2003). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1999). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Tong, M.-L., Wu, Y.-M., Ru, J., Chen, X.-M., Chang, H.-C. & Kitagawa, S. (2002). Inorg. Chem.41, 4846–4848. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography