PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m109.
Published online 2007 December 6. doi:  10.1107/S1600536807062940
PMCID: PMC2915062

Dibromidotetra­kis(1H-indazole-κN 2)copper(II)

Abstract

The Cu atom in the title compound, [CuBr2(C7H6N2)4], is surrounded by four N-heterocycles that define an N4 square-planar geometry. The coordination geometry is distorted towards an elongated octa­hedron owing to the presence of the two Br anions, which are located at about 3 Å above and below the square plane. There are two independent molecules in the asymmetric unit, each with their Cu atom lying on an inversion centre.

Related literature

For related structures, see Hossaini Sadr et al. (2004 [triangle], 2005 [triangle], 2006 [triangle]). For related literature, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m109-scheme1.jpg

Experimental

Crystal data

  • [CuBr2(C7H6N2)4]
  • M r = 695.91
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m109-efi1.jpg
  • a = 10.338 (1) Å
  • b = 10.923 (1) Å
  • c = 13.730 (1) Å
  • α = 72.545 (3)°
  • β = 77.329 (3)°
  • γ = 73.890 (3)°
  • V = 1405.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.65 mm−1
  • T = 295 (2) K
  • 0.24 × 0.21 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.073, T max = 0.668
  • 13779 measured reflections
  • 6389 independent reflections
  • 2895 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.061
  • wR(F 2) = 0.228
  • S = 1.13
  • 6389 reflections
  • 356 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.65 e Å−3
  • Δρmin = −1.00 e Å−3

Data collection: RAPID-AUTO (Rigaku Corporation, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2007 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062940/tk2226sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062940/tk2226Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Research Office of Azarbaijan University of Tarbiat Moallem, Heilongjiang Province Natural Science Foundation (grant No. B200501), the Scientific Fund for Remarkable Teachers of Heilongjiang Province (grant No. 1054G036), Heilongjiang University and the University of Malaya for supporting this work.

supplementary crystallographic information

Comment

Unlike benzimidazole, which affords a number of adducts with metal salts, indazole furnishes only few complexes (Cambridge Structural Database, Version 5.28; Allen, 2002). The present study of the copper dibromide adduct (I) follows previous studies on Cu complexes of pyrazole-based N-heterocycles (Hossaini Sadr et al., 2005; 2006).

Two independent [Cu(C7H6N2)4]2+2Br- formula units comprise the asymmetric unit in (I), each with the Cu atom situated on a center of inversion. Complex (I) is formally a salt (Fig. 1) owing to the large distance of the Br ions (more than 3 Å) above and below the N4 square plane defined by the four N-heterocycles. In the corresponding imidazole adduct, one Br atom is covalently bonded whereas the other is uncoordinated, so that the geometry is a square pyramid (Hossaini Sadr et al., 2004).

Experimental

Copper dibromide (0.05 g, 0.25 mmol) and indazole (0.12 g, 1 mmol) were dissolved in acetone (25 ml). Slow evapoaration of the filtered solution yielded crystals.

Refinement

The C– and N-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N). The vibrations of the Cu atoms appeared elongated in the directions of the weakly associated Br anions and, accordingly, the displacement factors were restrained to be nearly isotropic. The final difference Fourier map had a maximum and minimum residual density peaks at 1.35 Å from Br1 and Br2, respectively {AU to confirm this}.

Figures

Fig. 1.
Molecular structures of the two independent molecules of [Cu(C7H6N2)4]2+ 2Br- (I) showing displacement ellipsoids at the 50% probability level and H atoms as spheres of arbitrary radius. Each of the Cu atoms is located on a crystallographic center of ...

Crystal data

[CuBr2(C7H6N2)4]Z = 2
Mr = 695.91F000 = 694
Triclinic, P1Dx = 1.645 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 10.338 (1) ÅCell parameters from 7166 reflections
b = 10.923 (1) Åθ = 3.2–27.5º
c = 13.730 (1) ŵ = 3.65 mm1
α = 72.545 (3)ºT = 295 (2) K
β = 77.329 (3)ºPrism, blue
γ = 73.890 (3)º0.24 × 0.21 × 0.12 mm
V = 1405.3 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer6389 independent reflections
Radiation source: fine-focus sealed tube2895 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.046
Detector resolution: 10.000 pixels mm-1θmax = 27.5º
T = 295(2) Kθmin = 3.2º
ω scansh = −13→13
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −11→14
Tmin = 0.073, Tmax = 0.668l = −17→17
13779 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.228  w = 1/[σ2(Fo2) + (0.1018P)2 + 0.0608P] where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
6389 reflectionsΔρmax = 0.65 e Å3
356 parametersΔρmin = −1.00 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (2)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.62566 (10)0.25866 (8)0.41676 (7)0.1011 (4)
Br2−0.25176 (8)0.40169 (7)1.09777 (6)0.0840 (3)
Cu10.50000.50000.50000.0843 (5)
Cu20.00000.50001.00000.1230 (8)
N10.5411 (5)0.3924 (6)0.6427 (4)0.0636 (14)
N20.5199 (6)0.4347 (6)0.7267 (5)0.0774 (16)
H2N0.48770.51550.72910.093*
N30.3196 (6)0.4493 (7)0.5367 (4)0.0748 (17)
N40.2108 (6)0.5102 (6)0.5891 (5)0.0803 (17)
H4N0.20710.57970.60780.096*
N50.0567 (9)0.3532 (6)0.9272 (5)0.093 (2)
N60.1763 (9)0.3169 (7)0.8743 (6)0.100 (2)
H6N0.24080.35790.86040.120*
N7−0.0951 (9)0.6246 (6)0.8816 (5)0.090 (2)
N8−0.0317 (7)0.7102 (6)0.8075 (5)0.0885 (19)
H8N0.05140.71410.80310.106*
C10.5920 (6)0.2639 (6)0.6683 (4)0.0569 (15)
H10.61700.21060.62260.068*
C20.6029 (6)0.2195 (6)0.7719 (5)0.0591 (15)
C30.6478 (8)0.0951 (8)0.8374 (6)0.084 (2)
H30.68010.02060.81200.101*
C40.6428 (7)0.0863 (9)0.9382 (6)0.090 (3)
H40.66830.00380.98280.108*
C50.6006 (8)0.1974 (10)0.9777 (6)0.091 (3)
H50.60170.18811.04710.109*
C60.5577 (7)0.3201 (9)0.9148 (6)0.086 (2)
H60.52960.39450.94040.103*
C70.5573 (6)0.3298 (6)0.8111 (4)0.0592 (15)
C80.2874 (6)0.3499 (7)0.5225 (5)0.0630 (16)
H80.34600.29060.48710.076*
C90.1562 (6)0.3431 (7)0.5663 (4)0.0604 (16)
C100.0743 (8)0.2577 (8)0.5751 (6)0.086 (2)
H100.10710.18620.54610.104*
C11−0.0530 (8)0.2800 (9)0.6261 (7)0.091 (2)
H11−0.10820.22290.63270.109*
C12−0.1034 (7)0.3866 (9)0.6692 (6)0.084 (2)
H12−0.19230.40040.70350.101*
C13−0.0257 (7)0.4712 (8)0.6621 (6)0.0763 (19)
H13−0.05990.54200.69190.092*
C140.1048 (6)0.4501 (6)0.6102 (5)0.0581 (15)
C15−0.0112 (7)0.2676 (7)0.9321 (5)0.0622 (16)
H15−0.10010.27040.96580.075*
C160.0607 (6)0.1736 (6)0.8832 (5)0.0578 (15)
C170.0283 (10)0.0657 (9)0.8687 (7)0.096 (3)
H17−0.05710.04720.89450.116*
C180.1251 (14)−0.0105 (9)0.8162 (8)0.108 (3)
H180.1061−0.08430.80690.130*
C190.2487 (11)0.0154 (10)0.7764 (7)0.104 (3)
H190.3122−0.04100.74080.124*
C200.2836 (7)0.1224 (9)0.7868 (6)0.088 (2)
H200.36840.14090.75770.105*
C210.1863 (6)0.2026 (6)0.8430 (4)0.0564 (14)
C22−0.2200 (10)0.6462 (7)0.8630 (6)0.086 (2)
H22−0.28510.59990.90220.103*
C23−0.2393 (9)0.7522 (7)0.7731 (6)0.080 (2)
C24−0.3451 (10)0.8178 (9)0.7148 (8)0.103 (3)
H24−0.42860.79420.73280.124*
C25−0.3207 (13)0.9197 (9)0.6288 (7)0.112 (3)
H25−0.39000.96530.58930.135*
C26−0.1982 (13)0.9552 (10)0.6004 (7)0.113 (3)
H26−0.18661.02400.54230.135*
C27−0.0951 (11)0.8941 (8)0.6536 (6)0.104 (3)
H27−0.01210.91870.63460.124*
C28−0.1185 (9)0.7895 (7)0.7408 (6)0.080 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1416 (8)0.0637 (6)0.0882 (6)0.0001 (5)−0.0230 (5)−0.0221 (4)
Br20.0917 (6)0.0649 (5)0.0874 (6)−0.0117 (4)−0.0083 (4)−0.0166 (4)
Cu10.0608 (7)0.1132 (11)0.0637 (7)−0.0366 (7)−0.0251 (6)0.0265 (7)
Cu20.232 (2)0.0513 (8)0.0766 (8)0.0341 (10)−0.0776 (11)−0.0246 (6)
N10.054 (3)0.085 (4)0.051 (3)−0.021 (3)−0.012 (2)−0.007 (3)
N20.070 (3)0.069 (4)0.083 (4)−0.011 (3)−0.020 (3)−0.003 (3)
N30.064 (3)0.086 (5)0.057 (3)−0.012 (3)−0.015 (3)0.007 (3)
N40.087 (4)0.073 (4)0.080 (4)−0.021 (3)−0.021 (3)−0.011 (3)
N50.134 (6)0.056 (4)0.067 (4)0.023 (4)−0.027 (4)−0.016 (3)
N60.151 (7)0.067 (4)0.097 (5)−0.041 (5)−0.055 (5)−0.002 (4)
N70.151 (6)0.042 (3)0.072 (4)0.002 (4)−0.044 (4)−0.010 (3)
N80.122 (5)0.058 (4)0.089 (4)−0.008 (4)−0.050 (4)−0.011 (3)
C10.064 (3)0.054 (4)0.045 (3)−0.007 (3)−0.014 (3)−0.004 (3)
C20.058 (3)0.056 (4)0.058 (3)−0.009 (3)−0.009 (3)−0.011 (3)
C30.097 (5)0.059 (4)0.084 (5)−0.008 (4)−0.021 (4)−0.005 (4)
C40.077 (5)0.095 (6)0.070 (5)−0.010 (4)−0.021 (4)0.018 (4)
C50.083 (5)0.121 (8)0.055 (4)−0.018 (5)−0.016 (4)−0.005 (5)
C60.078 (5)0.100 (6)0.072 (5)−0.009 (4)−0.011 (4)−0.023 (4)
C70.055 (3)0.069 (4)0.047 (3)−0.013 (3)−0.009 (3)−0.004 (3)
C80.051 (3)0.066 (4)0.063 (4)−0.004 (3)−0.003 (3)−0.017 (3)
C90.051 (3)0.073 (4)0.053 (3)−0.018 (3)−0.009 (3)−0.006 (3)
C100.084 (5)0.081 (5)0.103 (6)−0.026 (4)−0.009 (4)−0.034 (4)
C110.076 (5)0.098 (7)0.106 (6)−0.042 (5)−0.028 (5)−0.005 (5)
C120.059 (4)0.092 (6)0.079 (5)−0.015 (4)−0.001 (4)0.002 (4)
C130.068 (4)0.070 (5)0.082 (5)−0.005 (4)−0.006 (4)−0.020 (4)
C140.049 (3)0.063 (4)0.060 (3)−0.025 (3)−0.007 (3)0.000 (3)
C150.062 (4)0.061 (4)0.056 (3)0.000 (3)−0.006 (3)−0.017 (3)
C160.059 (3)0.052 (4)0.057 (3)−0.010 (3)−0.013 (3)−0.006 (3)
C170.118 (6)0.086 (6)0.096 (6)−0.060 (6)−0.028 (5)0.001 (5)
C180.166 (10)0.056 (5)0.117 (8)−0.011 (6)−0.058 (8)−0.029 (5)
C190.123 (8)0.086 (7)0.094 (6)0.031 (6)−0.044 (6)−0.042 (5)
C200.065 (4)0.117 (7)0.077 (5)−0.011 (4)−0.011 (4)−0.026 (5)
C210.072 (4)0.044 (3)0.054 (3)−0.011 (3)−0.016 (3)−0.012 (3)
C220.120 (7)0.055 (5)0.073 (5)0.004 (4)−0.014 (5)−0.023 (4)
C230.112 (6)0.055 (4)0.068 (4)0.009 (4)−0.030 (4)−0.022 (3)
C240.106 (6)0.098 (7)0.104 (6)0.011 (5)−0.028 (5)−0.045 (5)
C250.153 (9)0.082 (7)0.087 (6)0.032 (6)−0.064 (7)−0.020 (5)
C260.161 (10)0.084 (7)0.074 (5)0.010 (7)−0.030 (7)−0.020 (5)
C270.156 (8)0.059 (5)0.087 (5)−0.005 (5)−0.038 (6)−0.009 (4)
C280.118 (6)0.050 (4)0.069 (4)−0.003 (4)−0.035 (4)−0.012 (3)

Geometric parameters (Å, °)

Cu1—N12.027 (5)C6—H60.9300
Cu1—N32.008 (6)C8—C91.370 (8)
Cu1—Br13.033 (1)C8—H80.9300
Cu2—N52.024 (7)C9—C101.389 (10)
Cu2—N72.023 (6)C9—C141.395 (9)
Cu2—Br22.980 (1)C10—C111.342 (11)
Cu1—N3i2.008 (6)C10—H100.9300
Cu1—N1i2.027 (5)C11—C121.385 (12)
Cu2—N7ii2.023 (6)C11—H110.9300
Cu2—N5ii2.024 (7)C12—C131.354 (12)
N1—N21.320 (8)C12—H120.9300
N1—C11.321 (8)C13—C141.374 (8)
N2—C71.400 (8)C13—H130.9300
N2—H2N0.8600C15—C161.352 (9)
N3—C81.298 (9)C15—H150.9300
N3—N41.320 (8)C16—C211.378 (8)
N4—C141.364 (8)C16—C171.389 (10)
N4—H4N0.8600C17—C181.340 (13)
N5—C151.295 (10)C17—H170.9300
N5—N61.312 (9)C18—C191.347 (13)
N6—C211.409 (9)C18—H180.9300
N6—H6N0.8600C19—C201.368 (13)
N7—C221.315 (10)C19—H190.9300
N7—N81.347 (9)C20—C211.397 (10)
N8—C281.359 (9)C20—H200.9300
N8—H8N0.8600C22—C231.424 (10)
C1—C21.377 (8)C22—H220.9300
C1—H10.9300C23—C281.362 (11)
C2—C71.388 (9)C23—C241.399 (12)
C2—C31.404 (9)C24—C251.391 (13)
C3—C41.348 (11)C24—H240.9300
C3—H30.9300C25—C261.368 (14)
C4—C51.398 (12)C25—H250.9300
C4—H40.9300C26—C271.330 (13)
C5—C61.372 (11)C26—H260.9300
C5—H50.9300C27—C281.415 (11)
C6—C71.396 (9)C27—H270.9300
N3—Cu1—N3i180.0 (4)C5—C6—C7118.0 (8)
N3—Cu1—N188.2 (2)C5—C6—H6121.0
N3i—Cu1—N191.8 (2)C7—C6—H6121.0
N3—Cu1—N1i91.8 (2)C2—C7—C6121.1 (6)
N3i—Cu1—N1i88.2 (2)C2—C7—N2104.9 (6)
N1—Cu1—N1i180.00 (16)C6—C7—N2133.9 (7)
N3—Cu1—Br1i90.3 (2)N3—C8—C9111.5 (6)
N3i—Cu1—Br1i89.7 (2)N3—C8—H8124.2
N1—Cu1—Br1i89.84 (18)C9—C8—H8124.2
N1i—Cu1—Br1i90.16 (18)C8—C9—C10134.8 (7)
N3—Cu1—Br189.7 (2)C8—C9—C14105.7 (6)
N3i—Cu1—Br190.3 (2)C10—C9—C14119.6 (6)
N1—Cu1—Br190.16 (18)C11—C10—C9119.0 (8)
N1i—Cu1—Br189.84 (18)C11—C10—H10120.5
Br1i—Cu1—Br1180.00 (3)C9—C10—H10120.5
N7ii—Cu2—N7180.000 (2)C10—C11—C12121.1 (7)
N7ii—Cu2—N5ii91.3 (2)C10—C11—H11119.5
N7—Cu2—N5ii88.7 (2)C12—C11—H11119.5
N7ii—Cu2—N588.7 (2)C13—C12—C11121.2 (7)
N7—Cu2—N591.3 (2)C13—C12—H12119.4
N5ii—Cu2—N5180.000 (2)C11—C12—H12119.4
N7ii—Cu2—Br289.4 (2)C12—C13—C14118.6 (8)
N7—Cu2—Br290.6 (2)C12—C13—H13120.7
N5ii—Cu2—Br292.4 (3)C14—C13—H13120.7
N5—Cu2—Br287.6 (3)N4—C14—C13135.3 (7)
N7ii—Cu2—Br2ii90.6 (2)N4—C14—C9104.2 (5)
N7—Cu2—Br2ii89.4 (2)C13—C14—C9120.6 (6)
N5ii—Cu2—Br2ii87.6 (3)N5—C15—C16112.9 (6)
N5—Cu2—Br2ii92.4 (3)N5—C15—H15123.6
Br2—Cu2—Br2ii180.00 (3)C16—C15—H15123.6
N2—N1—C1107.6 (5)C15—C16—C21106.6 (6)
N2—N1—Cu1127.4 (5)C15—C16—C17132.2 (7)
C1—N1—Cu1125.0 (5)C21—C16—C17121.2 (7)
N1—N2—C7110.5 (6)C18—C17—C16117.3 (8)
N1—N2—H2N124.8C18—C17—H17121.3
C7—N2—H2N124.8C16—C17—H17121.3
C8—N3—N4106.6 (6)C17—C18—C19122.6 (9)
C8—N3—Cu1129.2 (5)C17—C18—H18118.7
N4—N3—Cu1124.0 (6)C19—C18—H18118.7
N3—N4—C14112.1 (6)C18—C19—C20121.9 (8)
N3—N4—H4N124.0C18—C19—H19119.1
C14—N4—H4N124.0C20—C19—H19119.1
C15—N5—N6105.9 (6)C19—C20—C21117.1 (7)
C15—N5—Cu2127.4 (6)C19—C20—H20121.5
N6—N5—Cu2126.4 (7)C21—C20—H20121.5
N5—N6—C21111.7 (7)C16—C21—C20119.8 (6)
N5—N6—H6N124.1C16—C21—N6102.9 (6)
C21—N6—H6N124.1C20—C21—N6137.2 (7)
C22—N7—N8108.1 (6)N7—C22—C23108.8 (8)
C22—N7—Cu2131.1 (6)N7—C22—H22125.6
N8—N7—Cu2120.6 (6)C23—C22—H22125.6
N7—N8—C28110.0 (7)C28—C23—C24118.2 (8)
N7—N8—H8N125.0C28—C23—C22105.7 (7)
C28—N8—H8N125.0C24—C23—C22136.1 (10)
N1—C1—C2110.9 (6)C25—C24—C23117.5 (10)
N1—C1—H1124.6C25—C24—H24121.2
C2—C1—H1124.6C23—C24—H24121.2
C1—C2—C7106.1 (5)C26—C25—C24122.1 (9)
C1—C2—C3134.0 (7)C26—C25—H25119.0
C7—C2—C3119.9 (6)C24—C25—H25119.0
C4—C3—C2118.4 (8)C27—C26—C25121.9 (10)
C4—C3—H3120.8C27—C26—H26119.0
C2—C3—H3120.8C25—C26—H26119.0
C3—C4—C5122.1 (7)C26—C27—C28116.4 (10)
C3—C4—H4119.0C26—C27—H27121.8
C5—C4—H4119.0C28—C27—H27121.8
C6—C5—C4120.4 (7)N8—C28—C23107.4 (7)
C6—C5—H5119.8N8—C28—C27128.8 (9)
C4—C5—H5119.8C23—C28—C27123.8 (8)
N3—Cu1—N1—N2−93.9 (5)C5—C6—C7—N2179.1 (7)
N3i—Cu1—N1—N286.1 (5)N1—N2—C7—C2−0.1 (7)
Br1i—Cu1—N1—N2−3.6 (5)N1—N2—C7—C6178.9 (7)
Br1—Cu1—N1—N2176.4 (5)N4—N3—C8—C9−0.4 (8)
N3—Cu1—N1—C184.4 (5)Cu1—N3—C8—C9174.8 (4)
N3i—Cu1—N1—C1−95.6 (5)N3—C8—C9—C10−178.6 (8)
Br1i—Cu1—N1—C1174.6 (5)N3—C8—C9—C140.5 (7)
Br1—Cu1—N1—C1−5.4 (5)C8—C9—C10—C11178.9 (7)
C1—N1—N2—C7−0.5 (7)C14—C9—C10—C11−0.2 (11)
Cu1—N1—N2—C7178.0 (4)C9—C10—C11—C120.4 (13)
N1—Cu1—N3—C8−91.4 (6)C10—C11—C12—C13−0.7 (13)
N1i—Cu1—N3—C888.6 (6)C11—C12—C13—C140.7 (12)
Br1i—Cu1—N3—C8178.8 (6)N3—N4—C14—C13178.6 (7)
Br1—Cu1—N3—C8−1.2 (6)N3—N4—C14—C90.3 (7)
N1—Cu1—N3—N483.0 (5)C12—C13—C14—N4−178.6 (7)
N1i—Cu1—N3—N4−97.0 (5)C12—C13—C14—C9−0.5 (10)
Br1i—Cu1—N3—N4−6.8 (5)C8—C9—C14—N4−0.5 (7)
Br1—Cu1—N3—N4173.2 (5)C10—C9—C14—N4178.9 (6)
C8—N3—N4—C140.1 (7)C8—C9—C14—C13−179.1 (6)
Cu1—N3—N4—C14−175.4 (4)C10—C9—C14—C130.2 (10)
N7ii—Cu2—N5—C1591.4 (7)N6—N5—C15—C16−0.1 (8)
N7—Cu2—N5—C15−88.6 (7)Cu2—N5—C15—C16−173.3 (4)
Br2—Cu2—N5—C152.0 (6)N5—C15—C16—C21−0.2 (8)
Br2ii—Cu2—N5—C15−178.0 (6)N5—C15—C16—C17−179.4 (7)
N7ii—Cu2—N5—N6−80.5 (6)C15—C16—C17—C18−179.4 (8)
N7—Cu2—N5—N699.5 (6)C21—C16—C17—C181.5 (11)
Br2—Cu2—N5—N6−170.0 (6)C16—C17—C18—C19−1.3 (14)
Br2ii—Cu2—N5—N610.0 (6)C17—C18—C19—C20−0.2 (15)
C15—N5—N6—C210.3 (8)C18—C19—C20—C211.5 (13)
Cu2—N5—N6—C21173.7 (4)C15—C16—C21—C20−179.5 (6)
N5ii—Cu2—N7—C22−92.2 (7)C17—C16—C21—C20−0.2 (10)
N5—Cu2—N7—C2287.8 (7)C15—C16—C21—N60.4 (7)
Br2—Cu2—N7—C220.3 (7)C17—C16—C21—N6179.7 (6)
Br2ii—Cu2—N7—C22−179.7 (7)C19—C20—C21—C16−1.3 (11)
N5ii—Cu2—N7—N883.4 (6)C19—C20—C21—N6178.9 (7)
N5—Cu2—N7—N8−96.6 (6)N5—N6—C21—C16−0.4 (7)
Br2—Cu2—N7—N8175.8 (5)N5—N6—C21—C20179.4 (8)
Br2ii—Cu2—N7—N8−4.2 (5)N8—N7—C22—C23−0.7 (8)
C22—N7—N8—C280.8 (8)Cu2—N7—C22—C23175.2 (5)
Cu2—N7—N8—C28−175.7 (5)N7—C22—C23—C280.4 (8)
N2—N1—C1—C20.9 (7)N7—C22—C23—C24178.5 (8)
Cu1—N1—C1—C2−177.6 (4)C28—C23—C24—C25−1.7 (11)
N1—C1—C2—C7−1.0 (7)C22—C23—C24—C25−179.7 (8)
N1—C1—C2—C3179.1 (7)C23—C24—C25—C260.6 (14)
C1—C2—C3—C4−179.0 (7)C24—C25—C26—C270.0 (15)
C7—C2—C3—C41.1 (11)C25—C26—C27—C280.5 (14)
C2—C3—C4—C5−3.0 (12)N7—N8—C28—C23−0.5 (8)
C3—C4—C5—C62.4 (12)N7—N8—C28—C27178.6 (7)
C4—C5—C6—C70.2 (11)C24—C23—C28—N8−178.4 (7)
C1—C2—C7—C6−178.5 (6)C22—C23—C28—N80.1 (8)
C3—C2—C7—C61.4 (10)C24—C23—C28—C272.4 (11)
C1—C2—C7—N20.6 (7)C22—C23—C28—C27−179.1 (7)
C3—C2—C7—N2−179.4 (6)C26—C27—C28—N8179.2 (8)
C5—C6—C7—C2−2.0 (10)C26—C27—C28—C23−1.7 (13)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2226).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hossaini Sadr, M., Jalili, A. R., Razmi, H. & Ng, S. W. (2005). J. Organomet. Chem.690, 2128–2132.
  • Hossaini Sadr, M., Sardroodi, J. J., Zare, D., Brooks, N. R., Clegg, W. & Song, Y. (2006). Polyhedron, 25, 3285–3288.
  • Hossaini Sadr, M., Zare, D., Lewis, W., Wikaira, J., Robinson, W. T. & Ng, S. W. (2004). Acta Cryst. E60, m1324–m1326.
  • Rigaku Corporation (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Westrip, S. P. (2007). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography