PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m102.
Published online 2007 December 6. doi:  10.1107/S1600536807064720
PMCID: PMC2915056

Tetra­kis(μ-propanoato-κ2 O:O′)bis­[(1,10-phenanthroline-κ2 N,N′)(propanoato-κ2 O,O′)samarium(III)]

Abstract

The title complex, [Sm2(C3H5O2)6(C12H8N2)2], is a dinuclear centrosymmetric mol­ecule, in which two crystallographically equivalent Sm atoms, separated by 3.9502 (2) Å, are bridged by four propanoate anions. Each Sm atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxylate O atoms from five propanoate anions, to form a distorted tricapped trigonal prism.

Related literature

For related literature, see: Lu et al. (2000 [triangle]); Lu, Lu, Wu & Wang (2001 [triangle]); Lu, Wu & Wang (2001 [triangle]); Wang et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-0m102-scheme1.jpg

Experimental

Crystal data

  • [Sm2(C3H5O2)6(C12H8N2)2]
  • M r = 1099.55
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-0m102-efi1.jpg
  • a = 9.5740 (2) Å
  • b = 18.3182 (5) Å
  • c = 12.7307 (3) Å
  • β = 107.103 (1)°
  • V = 2133.95 (9) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.79 mm−1
  • T = 290 (2) K
  • 0.25 × 0.21 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.508, T max = 0.613
  • 22209 measured reflections
  • 5133 independent reflections
  • 4563 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022
  • wR(F 2) = 0.065
  • S = 0.96
  • 5133 reflections
  • 275 parameters
  • H-atom parameters constrained
  • Δρmax = 1.10 e Å−3
  • Δρmin = −0.66 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2004 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807064720/kp2147sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807064720/kp2147Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Jiangxi Provincial Natural Science Foundation (grant No. 0620018) and Jiangxi University of Science and Technology Doctoral Foundation (grant No. 2003-1).

supplementary crystallographic information

Comment

In the recent years, a series of dimeric [M(phen)(C5H7O2)3]2 (M= La (Lu, Lu, Wu & Wang, 2001; Lu, Wu & Wang, 2001), Tb, Ho (Lu et al., 2000), Dy (Wang et al., 2005), C5H7O2= trans-2,3-dimethylacrylate) analogues have been reported, in which the lanthanide ions form a dinuclear centrosymmetric molecule through the coordination of bridging carboxylato groups. An isostructural complex, [Sm(phen)(C3H5O2)3]2, (I), was obtained after the trans-2,3-dimethylacrylate ligands were replaced by propanoato ligands. Each Sm atom exhibits a distorted tricapped trigonal prism coordinated by two N atoms from one chelating phenanthroline ligand and seven carboxyl oxygen atoms from five propanoato anions (Fig. 1). The carboxylato groups exhibit three different coordination modes: a common bidentate chelating mode, a bidentate bridging mode, and tridentate bridging mode, resulting in a dinuclear centrosymmetric molecule with the Sm1···Sm1i distance of 3.9502 (2) Å. The Sm1—O bond distances vary from 2.3784 (14)Å to 2.5901 (16)Å and the Sm1—N bond length are 2.6042 (16)Å and 2.6528 (19)Å (Table 1) similar to those found in the previously mentioned trans-2,3-dimethylacrylato complexes. The C—O and C—C distances are within the range of 1.242 (3)Å to 1.272 (3)Å and 1.502 (4) Å–1.515 (3) Å, respectively. The dimeric molecules are assembled into two-dimensional sheets parallel to (100) by face-to-face π-π stacking interactions. The phenanthroline rings involved in π-π stacking interactions located at (x, y, z) and (1 - x, 1 - y, 2 - z) are strictly parallel with an interplanar spacing of 3.301 (3)Å [the centroid separation of 4.492 (2) Å and the centroid offset of 3.047 (3) Å] and those located at (x, y, z) and (2 - x, 1 - y, 2 - z) with interplanar spacing of 3.371 (3) Å [the centroid separation of 4.838 (3) Å and the centroid offset of 3.470 (3) Å]. However, there are no direction-specific interactions between adjacent sheets.

Experimental

A solution obtained by dissolving 0.200 g (0.463 mmol) of Sm2O3 in 20 ml (36.5%) HCl was evaporated to dryness. Then 25 ml of CH3OH / H2O (1:1 v/v) was added followed by 0.5 ml of propanoic acid, and 0.25 g (1.261 mmol) phenanthroline with strring. A colourless solution was left for several days and crystals were obtain by slow evaporation at room temperature. Yield of 20% based on the initial Sm2O3.

Refinement

H atoms attached to C atoms were included at calculated positions and treated as riding atoms, with C–H distances of 0.93 Å (aromatic), 0.97 Å (methylene) and 0.96 Å (methyl), and with Uiso(H) values of 1.5Ueq(C) for methyl H atoms and 1.2Ueq for others.

Figures

Fig. 1.
The dinuclear structure of the title compound with the atom numbering scheme showing displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z.]

Crystal data

[Sm2(C3H5O2)6(C12H8N2)2]F000 = 1092
Mr = 1099.55Dx = 1.711 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 198 reflections
a = 9.5740 (2) Åθ = 2.1–26.7º
b = 18.3182 (5) ŵ = 2.79 mm1
c = 12.7307 (3) ÅT = 290 (2) K
β = 107.103 (1)ºCloumn, colourless
V = 2133.95 (9) Å30.25 × 0.21 × 0.17 mm
Z = 2

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5133 independent reflections
Radiation source: fine-focus sealed tube4563 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.030
T = 290(2) Kθmax = 28.0º
[var phi] and ω scansθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −11→12
Tmin = 0.508, Tmax = 0.613k = −24→22
22209 measured reflectionsl = −16→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022  w = 1/[σ2(Fo2) + (0.0507P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065(Δ/σ)max = 0.012
S = 0.96Δρmax = 1.10 e Å3
5133 reflectionsΔρmin = −0.66 e Å3
275 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00050 (8)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sm10.603212 (11)0.530844 (5)0.651651 (8)0.0277 (6)
C10.8823 (3)0.41499 (14)0.8116 (2)0.0425 (5)
H10.89100.40650.74180.051*
C20.9724 (3)0.37486 (16)0.9002 (2)0.0532 (6)
H21.03710.34000.88870.064*
C30.9625 (3)0.38827 (16)1.0030 (2)0.0523 (7)
H31.02080.36241.06270.063*
C40.8639 (2)0.44146 (14)1.01906 (18)0.0403 (5)
C50.8517 (3)0.45852 (16)1.1256 (2)0.0507 (7)
H50.91140.43491.18720.061*
C60.7545 (3)0.50857 (16)1.13715 (19)0.0490 (6)
H60.74600.51831.20670.059*
C70.6635 (3)0.54731 (14)1.04381 (18)0.0397 (5)
C80.5635 (3)0.60054 (14)1.05310 (19)0.0450 (6)
H80.55340.61231.12160.054*
C90.4809 (3)0.63520 (14)0.96118 (19)0.0456 (6)
H90.41510.67140.96630.055*
C100.4962 (3)0.61560 (13)0.85904 (18)0.0400 (5)
H100.43830.63920.79670.048*
C110.6732 (3)0.53143 (11)0.93823 (18)0.0333 (5)
C120.7774 (3)0.47707 (11)0.92520 (19)0.0336 (5)
C130.4212 (2)0.39864 (12)0.61132 (16)0.0322 (4)
C140.3063 (3)0.33972 (16)0.5805 (2)0.0504 (6)
H14A0.34590.29860.55050.060*
H14B0.22340.35820.52300.060*
C150.2530 (4)0.31277 (19)0.6741 (2)0.0685 (9)
H15A0.33280.29110.72950.103*
H15B0.17750.27710.64710.103*
H15C0.21470.35310.70530.103*
C160.7414 (3)0.66842 (13)0.70839 (18)0.0383 (5)
C170.8162 (3)0.73884 (15)0.7554 (3)0.0549 (6)
H17A0.79350.77620.69900.066*
H17B0.92120.73160.77880.066*
C180.7672 (4)0.76422 (16)0.8528 (3)0.0689 (9)
H18A0.66290.76990.83040.103*
H18B0.81260.81010.87900.103*
H18C0.79510.72860.91060.103*
C190.7591 (2)0.43839 (13)0.47916 (17)0.0352 (4)
C200.8978 (3)0.40185 (17)0.4716 (2)0.0580 (7)
H20A0.95360.43700.44350.070*
H20B0.95610.38840.54510.070*
C210.8744 (4)0.33504 (18)0.4002 (3)0.0666 (8)
H21A0.82270.29890.42880.100*
H21B0.96730.31570.39930.100*
H21C0.81830.34780.32670.100*
N10.7860 (2)0.46400 (9)0.82208 (16)0.0342 (4)
N20.58902 (19)0.56515 (10)0.84676 (13)0.0328 (4)
O10.47819 (18)0.41818 (9)0.70787 (12)0.0412 (4)
O20.45959 (17)0.42819 (8)0.53367 (11)0.0349 (3)
O30.60502 (17)0.66725 (10)0.66879 (13)0.0425 (4)
O40.81734 (19)0.61156 (9)0.71259 (15)0.0451 (4)
O50.76476 (19)0.46719 (8)0.57009 (14)0.0420 (4)
O60.65199 (16)0.43918 (10)0.39479 (12)0.0394 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sm10.0318 (9)0.0357 (10)0.0182 (9)0.0015 (8)0.0047 (7)−0.0013 (7)
C10.0376 (13)0.0473 (14)0.0390 (13)0.0044 (10)0.0057 (10)0.0005 (10)
C20.0483 (15)0.0514 (15)0.0538 (16)0.0129 (12)0.0052 (12)0.0059 (12)
C30.0423 (14)0.0595 (17)0.0467 (15)0.0055 (12)−0.0008 (12)0.0160 (12)
C40.0334 (12)0.0507 (14)0.0320 (12)−0.0082 (11)0.0012 (9)0.0075 (10)
C50.0460 (16)0.0687 (18)0.0288 (13)−0.0083 (13)−0.0022 (11)0.0131 (11)
C60.0552 (16)0.0669 (17)0.0224 (11)−0.0122 (14)0.0071 (11)0.0029 (11)
C70.0441 (14)0.0502 (13)0.0233 (11)−0.0129 (11)0.0065 (10)−0.0013 (9)
C80.0519 (15)0.0567 (16)0.0301 (12)−0.0102 (12)0.0181 (11)−0.0074 (10)
C90.0527 (15)0.0512 (15)0.0387 (13)−0.0032 (12)0.0215 (11)−0.0082 (10)
C100.0445 (13)0.0473 (13)0.0305 (11)0.0021 (11)0.0136 (10)0.0001 (9)
C110.0335 (12)0.0410 (13)0.0240 (11)−0.0098 (8)0.0064 (9)0.0003 (7)
C120.0291 (11)0.0397 (13)0.0274 (12)−0.0080 (8)0.0022 (9)0.0023 (8)
C130.0329 (11)0.0363 (12)0.0272 (10)0.0033 (9)0.0081 (9)0.0029 (8)
C140.0540 (16)0.0587 (17)0.0367 (13)−0.0172 (13)0.0092 (11)−0.0020 (11)
C150.076 (2)0.075 (2)0.0565 (18)−0.0412 (18)0.0227 (16)−0.0012 (15)
C160.0424 (13)0.0419 (13)0.0301 (11)−0.0030 (10)0.0102 (10)0.0013 (9)
C170.0544 (16)0.0416 (14)0.0673 (18)−0.0076 (12)0.0153 (14)−0.0041 (12)
C180.084 (2)0.0476 (17)0.071 (2)−0.0055 (16)0.0155 (17)−0.0220 (14)
C190.0306 (11)0.0443 (13)0.0306 (11)0.0030 (9)0.0093 (9)−0.0034 (9)
C200.0359 (14)0.081 (2)0.0528 (16)0.0165 (13)0.0068 (12)−0.0200 (14)
C210.066 (2)0.068 (2)0.070 (2)0.0218 (16)0.0262 (16)−0.0120 (15)
N10.0315 (10)0.0411 (11)0.0270 (10)−0.0014 (7)0.0031 (8)−0.0005 (7)
N20.0341 (10)0.0414 (11)0.0230 (9)−0.0014 (8)0.0076 (7)−0.0018 (7)
O10.0459 (10)0.0540 (10)0.0222 (7)−0.0113 (8)0.0076 (7)0.0010 (6)
O20.0433 (10)0.0396 (9)0.0231 (10)0.0012 (7)0.0066 (6)−0.0013 (6)
O30.0418 (10)0.0357 (10)0.0365 (9)0.0029 (7)0.0065 (7)−0.0011 (8)
O40.0387 (9)0.0404 (10)0.0526 (11)0.0004 (7)0.0077 (8)−0.0032 (7)
O50.0359 (10)0.0584 (12)0.0301 (9)0.0114 (7)0.0068 (7)−0.0070 (6)
O60.0314 (8)0.0551 (10)0.0308 (8)0.0058 (8)0.0069 (7)−0.0061 (7)

Geometric parameters (Å, °)

Sm1—O12.5901 (16)C11—N21.355 (3)
Sm1—O22.5432 (15)C11—C121.453 (3)
Sm1—O2i2.3783 (14)C12—N11.361 (3)
Sm1—O32.5078 (19)C13—O11.242 (3)
Sm1—O42.4608 (17)C13—O21.272 (2)
Sm1—O52.4030 (16)C13—C141.508 (3)
Sm1—O6i2.4023 (15)C14—C151.511 (4)
Sm1—N12.6528 (19)C14—H14A0.9700
Sm1—N22.6042 (16)C14—H14B0.9700
Sm1—Sm1i3.9502 (2)C15—H15A0.9600
C1—N11.321 (3)C15—H15B0.9600
C1—C21.409 (4)C15—H15C0.9600
C1—H10.9300C16—O31.254 (3)
C2—C31.362 (4)C16—O41.262 (3)
C2—H20.9300C16—C171.511 (3)
C3—C41.413 (4)C17—C181.521 (4)
C3—H30.9300C17—H17A0.9700
C4—C121.399 (3)C17—H17B0.9700
C4—C51.430 (4)C18—H18A0.9600
C5—C61.345 (4)C18—H18B0.9600
C5—H50.9300C18—H18C0.9600
C6—C71.437 (3)C19—O61.248 (3)
C6—H60.9300C19—O51.259 (3)
C7—C81.396 (4)C19—C201.515 (3)
C7—C111.405 (3)C20—C211.502 (4)
C8—C91.361 (4)C20—H20A0.9700
C8—H80.9300C20—H20B0.9700
C9—C101.398 (3)C21—H21A0.9600
C9—H90.9300C21—H21B0.9600
C10—N21.323 (3)C21—H21C0.9600
C10—H100.9300
O2i—Sm1—O6i75.03 (5)C8—C9—H9120.4
O2i—Sm1—O574.43 (6)C10—C9—H9120.4
O6i—Sm1—O5137.89 (5)N2—C10—C9123.2 (2)
O2i—Sm1—O493.86 (6)N2—C10—H10118.4
O6i—Sm1—O4129.27 (6)C9—C10—H10118.4
O5—Sm1—O481.11 (6)N2—C11—C7122.5 (2)
O2i—Sm1—O376.42 (5)N2—C11—C12117.99 (19)
O6i—Sm1—O376.95 (6)C7—C11—C12119.5 (2)
O5—Sm1—O3122.16 (6)N1—C12—C4123.6 (2)
O4—Sm1—O352.42 (5)N1—C12—C11118.0 (2)
O2i—Sm1—O273.28 (5)C4—C12—C11118.4 (2)
O6i—Sm1—O271.91 (5)O1—C13—O2120.2 (2)
O5—Sm1—O272.00 (5)O1—C13—C14122.54 (19)
O4—Sm1—O2152.38 (5)O2—C13—C14117.24 (19)
O3—Sm1—O2140.97 (5)C13—C14—C15114.8 (2)
O2i—Sm1—O1121.53 (5)C13—C14—H14A108.6
O6i—Sm1—O174.39 (6)C15—C14—H14A108.6
O5—Sm1—O198.12 (5)C13—C14—H14B108.6
O4—Sm1—O1143.28 (6)C15—C14—H14B108.6
O3—Sm1—O1139.62 (5)H14A—C14—H14B107.6
O2—Sm1—O150.24 (4)C14—C15—H15A109.5
O2i—Sm1—N2143.24 (6)C14—C15—H15B109.5
O6i—Sm1—N281.08 (5)H15A—C15—H15B109.5
O5—Sm1—N2138.59 (6)C14—C15—H15C109.5
O4—Sm1—N280.02 (6)H15A—C15—H15C109.5
O3—Sm1—N271.19 (5)H15B—C15—H15C109.5
O2—Sm1—N2124.81 (5)O3—C16—O4121.4 (2)
O1—Sm1—N276.74 (5)O3—C16—C17119.3 (2)
O2i—Sm1—N1150.52 (6)O4—C16—C17119.2 (2)
O6i—Sm1—N1133.27 (6)C16—C17—C18111.1 (2)
O5—Sm1—N177.04 (6)C16—C17—H17A109.4
O4—Sm1—N174.42 (6)C18—C17—H17A109.4
O3—Sm1—N1113.75 (5)C16—C17—H17B109.4
O2—Sm1—N1104.70 (5)C18—C17—H17B109.4
O1—Sm1—N169.73 (5)H17A—C17—H17B108.0
N2—Sm1—N162.50 (6)C17—C18—H18A109.5
O2i—Sm1—Sm1i38.07 (4)C17—C18—H18B109.5
O6i—Sm1—Sm1i69.18 (4)H18A—C18—H18B109.5
O5—Sm1—Sm1i68.86 (4)C17—C18—H18C109.5
O4—Sm1—Sm1i127.66 (4)H18A—C18—H18C109.5
O3—Sm1—Sm1i111.02 (4)H18B—C18—H18C109.5
O2—Sm1—Sm1i35.21 (3)O6—C19—O5126.0 (2)
O1—Sm1—Sm1i84.44 (3)O6—C19—C20117.7 (2)
N2—Sm1—Sm1i148.20 (4)O5—C19—C20116.3 (2)
N1—Sm1—Sm1i133.44 (4)C21—C20—C19114.9 (2)
N1—C1—C2123.7 (3)C21—C20—H20A108.5
N1—C1—H1118.2C19—C20—H20A108.5
C2—C1—H1118.2C21—C20—H20B108.5
C3—C2—C1118.4 (3)C19—C20—H20B108.5
C3—C2—H2120.8H20A—C20—H20B107.5
C1—C2—H2120.8C20—C21—H21A109.5
C2—C3—C4120.1 (2)C20—C21—H21B109.5
C2—C3—H3119.9H21A—C21—H21B109.5
C4—C3—H3119.9C20—C21—H21C109.5
C12—C4—C3116.8 (2)H21A—C21—H21C109.5
C12—C4—C5121.0 (2)H21B—C21—H21C109.5
C3—C4—C5122.2 (2)C1—N1—C12117.4 (2)
C6—C5—C4120.3 (2)C1—N1—Sm1122.88 (16)
C6—C5—H5119.8C12—N1—Sm1119.68 (14)
C4—C5—H5119.8C10—N2—C11117.88 (18)
C5—C6—C7121.1 (2)C10—N2—Sm1120.43 (14)
C5—C6—H6119.4C11—N2—Sm1121.67 (14)
C7—C6—H6119.4C13—O1—Sm193.45 (12)
C8—C7—C11117.8 (2)C13—O2—Sm1i149.14 (14)
C8—C7—C6122.6 (2)C13—O2—Sm194.89 (12)
C11—C7—C6119.6 (2)Sm1i—O2—Sm1106.72 (5)
C9—C8—C7119.5 (2)C16—O3—Sm191.82 (14)
C9—C8—H8120.2C16—O4—Sm193.81 (14)
C7—C8—H8120.2C19—O5—Sm1137.89 (15)
C8—C9—C10119.1 (2)C19—O6—Sm1i137.17 (14)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2147).

References

  • Bruker (2004). APEX2 (Version 1.27), SAINT (Version 6.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Lu, Y.-Q., Lu, W.-M., Wu, B. & Wang, L.-N. (2001). J. Coord. Chem.53, 15–23.
  • Lu, W.-M., Wu, B. & Wang, L.-N. (2001). Chem. J. Chin. Univ.22, 535–538.
  • Lu, W.-Q., Wu, B. & Zheng, X.-M. (2000). J. Chem. Cryst.30, 777–782.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2003). SADABS Version 2.10. University of Göttingen, Germany.
  • Wang, P., Song, L.-P., Li, Z.-F. & Han, D.-Q. (2005). Z. Kristallogr. New Cryst. Struct.220, 469–470.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography