PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o99–o100.
Published online 2007 December 6. doi:  10.1107/S1600536807059582
PMCID: PMC2915053

5′′-(4-Chloro­benzyl­idene)-1′,1′′-dimethyl-3′-phenyl­acenaphthene-1-spiro-2′-pyrrolidine-3′-spiro-3′′-pyridine-2,4′′-dione

Abstract

In the title compound, C34H28Cl2N2O2, the five-membered pyrrolidine ring adopts an envelope conformation and the six-membered piperidinone ring is in a distorted half-chair conformation. The mol­ecular structure shows three intra­molecular C—H(...)O inter­actions and the crystal packing is stabilized through inter­molecular C—H(...)O and C—H(...)π inter­actions.

Related literature

For the biological importance of pyrrolidines, see: Babu & Raghunathan (2007 [triangle]); Boruah et al. (2007 [triangle]); Chande et al. (2005 [triangle]); Horri et al. (1986 [triangle]); Karthikeyan et al. (2007 [triangle]); Watson et al. (2001 [triangle]). For puckering analysis, see: Cremer & Pople (1975 [triangle]). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o99-scheme1.jpg

Experimental

Crystal data

  • C34H28Cl2N2O2
  • M r = 567.48
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o99-efi1.jpg
  • a = 8.6561 (5) Å
  • b = 13.4732 (8) Å
  • c = 24.3962 (14) Å
  • β = 95.765 (12)°
  • V = 2830.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 293 (2) K
  • 0.22 × 0.19 × 0.15 mm

Data collection

  • Nonius MACH3 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.963, T max = 0.991
  • 5802 measured reflections
  • 4962 independent reflections
  • 3252 reflections with I > 2σ(I)
  • R int = 0.031
  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.122
  • S = 1.01
  • 4962 reflections
  • 361 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS ; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807059582/bt2624sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807059582/bt2624Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SA sincerely thanks the Vice-Chancellor and Management of the Kalasalingam University, Anand Nagar and Krishnan Koil, for their support and encouragement. SPR and BRK thank the Principal and Management of Devanga Arts College, Aruppukottai.

supplementary crystallographic information

Comment

1,3-Dipolar cycloadditions form a subject of intensive research in organic synthesis in view of their great synthetic potential (Karthikeyan et al., 2007). In particular, the cycloaddition of nonstabilized azomethine ylides with olefins represents one of the most convergent approaches for the construction of pyrrolidines (Boruah et al., 2007), which are prevalent in a variety of biologically active compounds (Watson et al., 2001) and find utility in the treatment of diseases such as diabetes (Horri et al., 1986). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007). Synthesis of spiro compounds have drawn considerable attention of the chemists, in view of their very good antimycobacterial activity (Chande et al., 2005).

The envelope conformation of the five-membered ring in (I), is observed through the puckering analysis [q2 = 0.446 (2) Å and [var phi]2 = 43.2 (3)°; Cremer & Pople, 1975] and the six-membered ring adopts distorted half-chair conformation [q2 = 0.289 (3) Å, [var phi]2 = 117.1 (6)° and q3 = -0.454 (2) Å] (Fig. 1). The dihedral angle between the chlorophenyl rings are 86.1 (1)° and these rings are making angles of 35.6 (1) and 51.7 (1)° with the acenaphthene group.

The molecular structure of the title compound shows three intramolecular hydrogen bonds (Desiraju & Steiner, 1999). The crystal packing is stabilized through intermolecular C—H···O and C—H···π interactions (Fig. 2; Table 1). Atom H21B interacts with the centroid of the ring C1–C6.

Experimental

A mixture of 1-methyl-3,5-bis[(E)-4-chlorophenylmethylidene]tetrahydro-4(1H)-pyridinone 1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure 1-Methyl-4-(4-chlorophenyl)pyrrolo-(spiro[2.2'']-acenaphthene-1'')- spiro[3.3']-5'-(4-chlorophenyl-methylidene)-1'-methyltetrahydro-4'-(1H)- pyridinone as pale yellow solid.

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and Uiso(H) =1.2–1.5 Ueq (parent atom).

Figures

Fig. 1.
The molecular structure of the title compound with the numbering scheme for the atoms and 50% probability displacement ellipsoids.
Fig. 2.
Packing diagram of the molecules, viewed down the a-axis.

Crystal data

C34H28Cl2N2O2F000 = 1184
Mr = 567.48Dx = 1.332 Mg m3
Monoclinic, P21/cMelting point: 188 K
Hall symbol: -P 2ybcMo Kα radiation λ = 0.71073 Å
a = 8.6561 (5) ÅCell parameters from 25 reflections
b = 13.4732 (8) Åθ = 10.5–13.6º
c = 24.3962 (14) ŵ = 0.26 mm1
β = 95.765 (12)ºT = 293 (2) K
V = 2830.8 (3) Å3Block, yellow
Z = 40.22 × 0.19 × 0.15 mm

Data collection

Nonius MACH3 sealed-tube diffractometerRint = 0.031
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.3º
T = 293(2) Kh = 0→10
ω/2θ scansk = −1→16
Absorption correction: ψ scan(North et al., 1968)l = −28→28
Tmin = 0.963, Tmax = 0.9913 standard reflections
5802 measured reflections every 60 min
4962 independent reflections intensity decay: none
3252 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.122  w = 1/[σ2(Fo2) + (0.054P)2 + 1.3189P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4962 reflectionsΔρmax = 0.23 e Å3
361 parametersΔρmin = −0.38 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl20.79695 (10)0.00677 (7)1.03985 (4)0.0837 (3)
Cl10.16195 (12)−0.09337 (8)0.47557 (3)0.0930 (3)
O10.59114 (19)0.19348 (15)0.77239 (7)0.0545 (5)
O20.01134 (19)0.30256 (13)0.83128 (7)0.0489 (4)
N10.1503 (2)0.11928 (13)0.79730 (7)0.0337 (4)
N20.3200 (2)0.40244 (14)0.83147 (8)0.0401 (5)
C110.3686 (2)0.22873 (16)0.82027 (8)0.0319 (5)
C120.4534 (3)0.17972 (17)0.77550 (9)0.0359 (5)
C230.2670 (2)0.32052 (16)0.79520 (9)0.0335 (5)
C340.1497 (3)0.31854 (16)0.70216 (9)0.0377 (5)
C140.4792 (3)0.27742 (17)0.86653 (9)0.0355 (5)
H140.56390.30750.84850.043*
C150.5539 (3)0.20976 (17)0.91073 (9)0.0381 (5)
C330.2867 (3)0.34333 (16)0.73527 (9)0.0363 (5)
C100.2658 (3)0.14841 (17)0.84174 (9)0.0347 (5)
H10A0.32830.09150.85430.042*
H10B0.21500.17370.87260.042*
C90.2157 (3)0.06607 (18)0.75306 (9)0.0397 (5)
H9A0.13780.06150.72170.048*
H9B0.2418−0.00090.76530.048*
C80.3586 (3)0.11524 (16)0.73517 (8)0.0347 (5)
C60.3385 (3)0.05882 (18)0.63499 (9)0.0404 (6)
C320.4090 (3)0.3797 (2)0.71080 (10)0.0494 (6)
H320.49940.39920.73180.059*
C250.0276 (3)0.29142 (17)0.73259 (9)0.0393 (5)
C28−0.0111 (4)0.2950 (2)0.61790 (11)0.0602 (8)
H28−0.02680.29460.57960.072*
C210.3811 (3)0.36211 (18)0.88423 (9)0.0417 (6)
H21A0.29870.33860.90510.050*
H21B0.44340.41060.90600.050*
C70.4055 (3)0.10997 (18)0.68459 (9)0.0403 (5)
H70.49620.14480.68030.048*
C10.2430 (3)−0.02498 (18)0.63447 (10)0.0433 (6)
H10.2161−0.05030.66770.052*
C240.0865 (3)0.29821 (17)0.79197 (10)0.0383 (5)
C20.1876 (3)−0.0710 (2)0.58587 (10)0.0495 (6)
H20.1237−0.12640.58630.059*
C300.2659 (4)0.3587 (2)0.62012 (11)0.0594 (7)
H300.26380.36220.58200.071*
C200.4931 (3)0.1922 (2)0.95991 (10)0.0581 (7)
H200.40020.22230.96660.070*
C50.3761 (3)0.0938 (2)0.58421 (10)0.0542 (7)
H50.43960.14930.58320.065*
C40.3216 (4)0.0480 (2)0.53541 (10)0.0632 (8)
H40.34790.07260.50200.076*
C27−0.1289 (4)0.2677 (2)0.64769 (12)0.0646 (8)
H27−0.22320.24900.62890.078*
C26−0.1144 (3)0.2666 (2)0.70582 (12)0.0541 (7)
H26−0.19770.24970.72520.065*
C130.0192 (3)0.0667 (2)0.81641 (10)0.0503 (6)
H13A−0.05290.04930.78540.075*
H13B−0.03140.10860.84090.075*
H13C0.05540.00750.83550.075*
C180.7050 (3)0.0867 (2)0.99047 (11)0.0529 (7)
C30.2282 (3)−0.0340 (2)0.53678 (10)0.0556 (7)
C160.6941 (3)0.1650 (2)0.90364 (11)0.0581 (7)
H160.73970.17700.87130.070*
C170.7690 (3)0.1030 (2)0.94300 (11)0.0635 (8)
H170.86230.07280.93680.076*
C190.5681 (4)0.1303 (3)0.99969 (11)0.0674 (9)
H190.52480.11871.03250.081*
C290.1345 (3)0.32391 (18)0.64422 (10)0.0474 (6)
C220.2206 (3)0.48950 (19)0.83214 (12)0.0555 (7)
H22A0.18720.50910.79500.083*
H22B0.27750.54290.85080.083*
H22C0.13160.47400.85110.083*
C310.3962 (4)0.3872 (2)0.65256 (11)0.0622 (8)
H310.47960.41260.63580.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl20.0812 (6)0.0873 (6)0.0762 (5)−0.0048 (5)−0.0242 (4)0.0362 (5)
Cl10.1263 (8)0.1056 (7)0.0430 (4)−0.0021 (6)−0.0113 (4)−0.0216 (4)
O10.0353 (10)0.0801 (13)0.0498 (10)−0.0078 (9)0.0125 (8)−0.0128 (9)
O20.0444 (9)0.0534 (11)0.0518 (10)0.0026 (8)0.0182 (8)−0.0063 (8)
N10.0334 (10)0.0378 (10)0.0308 (9)−0.0055 (8)0.0082 (8)−0.0027 (8)
N20.0466 (11)0.0340 (10)0.0388 (10)0.0000 (9)−0.0001 (9)−0.0031 (8)
C110.0319 (11)0.0348 (12)0.0294 (11)−0.0015 (9)0.0054 (9)−0.0003 (9)
C120.0343 (13)0.0387 (13)0.0356 (12)−0.0006 (10)0.0079 (10)0.0025 (10)
C230.0321 (11)0.0345 (12)0.0342 (11)−0.0031 (10)0.0043 (9)−0.0030 (9)
C340.0417 (13)0.0314 (12)0.0396 (12)0.0022 (10)0.0025 (10)0.0010 (10)
C140.0334 (11)0.0405 (13)0.0325 (11)−0.0049 (10)0.0032 (9)−0.0018 (10)
C150.0361 (13)0.0419 (13)0.0355 (12)−0.0056 (11)0.0003 (10)−0.0029 (10)
C330.0395 (13)0.0322 (12)0.0374 (12)−0.0018 (10)0.0044 (10)0.0021 (9)
C100.0369 (12)0.0361 (12)0.0317 (11)−0.0014 (10)0.0069 (9)0.0006 (9)
C90.0399 (12)0.0415 (13)0.0381 (12)−0.0048 (11)0.0057 (10)−0.0084 (10)
C80.0353 (12)0.0364 (12)0.0330 (11)0.0057 (10)0.0069 (9)−0.0020 (10)
C60.0455 (13)0.0423 (13)0.0344 (12)0.0088 (12)0.0087 (10)−0.0021 (10)
C320.0511 (15)0.0525 (16)0.0451 (14)−0.0128 (13)0.0083 (12)0.0064 (12)
C250.0360 (12)0.0378 (13)0.0430 (13)0.0032 (11)−0.0012 (10)0.0001 (10)
C280.079 (2)0.0536 (17)0.0435 (15)−0.0013 (15)−0.0166 (14)−0.0021 (13)
C210.0456 (14)0.0420 (13)0.0370 (12)−0.0065 (11)0.0028 (10)−0.0056 (10)
C70.0404 (13)0.0424 (13)0.0394 (13)0.0009 (11)0.0106 (10)−0.0025 (11)
C10.0490 (14)0.0457 (14)0.0364 (12)0.0062 (12)0.0097 (11)−0.0025 (11)
C240.0366 (12)0.0349 (13)0.0444 (13)0.0022 (10)0.0089 (11)−0.0009 (10)
C20.0529 (15)0.0507 (15)0.0447 (14)0.0044 (13)0.0046 (12)−0.0083 (12)
C300.084 (2)0.0600 (17)0.0349 (14)−0.0036 (16)0.0117 (14)0.0073 (13)
C200.0528 (16)0.078 (2)0.0446 (15)0.0064 (15)0.0097 (12)0.0115 (14)
C50.0750 (19)0.0486 (15)0.0409 (14)−0.0019 (14)0.0147 (13)0.0030 (12)
C40.097 (2)0.0628 (19)0.0303 (13)0.0078 (18)0.0092 (14)0.0061 (13)
C270.0573 (18)0.0663 (19)0.0642 (18)−0.0066 (15)−0.0237 (15)−0.0011 (15)
C260.0410 (14)0.0542 (17)0.0654 (18)−0.0037 (13)−0.0036 (12)0.0035 (14)
C130.0458 (14)0.0588 (16)0.0479 (14)−0.0162 (13)0.0131 (12)−0.0055 (13)
C180.0520 (16)0.0557 (17)0.0472 (15)−0.0054 (13)−0.0130 (12)0.0098 (13)
C30.0690 (18)0.0595 (18)0.0367 (14)0.0136 (15)−0.0026 (12)−0.0080 (12)
C160.0562 (17)0.075 (2)0.0441 (15)0.0151 (15)0.0114 (13)0.0113 (14)
C170.0539 (16)0.080 (2)0.0558 (17)0.0180 (15)0.0009 (13)0.0116 (15)
C190.0661 (19)0.096 (2)0.0403 (15)−0.0029 (18)0.0058 (13)0.0192 (16)
C290.0653 (17)0.0386 (14)0.0369 (13)0.0038 (12)−0.0014 (12)0.0014 (11)
C220.0649 (17)0.0398 (14)0.0602 (17)0.0069 (13)−0.0015 (14)−0.0080 (12)
C310.075 (2)0.0643 (19)0.0504 (16)−0.0144 (16)0.0210 (15)0.0113 (14)

Geometric parameters (Å, °)

Cl2—C181.747 (3)C25—C261.374 (3)
Cl1—C31.740 (3)C25—C241.489 (3)
O1—C121.217 (3)C28—C271.361 (4)
O2—C241.213 (3)C28—C291.411 (4)
N1—C101.453 (3)C28—H280.9300
N1—C131.454 (3)C21—H21A0.9700
N1—C91.457 (3)C21—H21B0.9700
N2—C211.447 (3)C7—H70.9300
N2—C221.456 (3)C1—C21.381 (3)
N2—C231.459 (3)C1—H10.9300
C11—C121.526 (3)C2—C31.376 (4)
C11—C101.527 (3)C2—H20.9300
C11—C141.550 (3)C30—C311.366 (4)
C11—C231.603 (3)C30—C291.412 (4)
C12—C81.495 (3)C30—H300.9300
C23—C331.520 (3)C20—C191.390 (4)
C23—C241.586 (3)C20—H200.9300
C34—C251.399 (3)C5—C41.381 (4)
C34—C331.407 (3)C5—H50.9300
C34—C291.408 (3)C4—C31.371 (4)
C14—C151.507 (3)C4—H40.9300
C14—C211.511 (3)C27—C261.411 (4)
C14—H140.9800C27—H270.9300
C15—C201.378 (3)C26—H260.9300
C15—C161.381 (3)C13—H13A0.9600
C33—C321.358 (3)C13—H13B0.9600
C10—H10A0.9700C13—H13C0.9600
C10—H10B0.9700C18—C171.351 (4)
C9—C81.506 (3)C18—C191.361 (4)
C9—H9A0.9700C16—C171.384 (4)
C9—H9B0.9700C16—H160.9300
C8—C71.339 (3)C17—H170.9300
C6—C51.394 (3)C19—H190.9300
C6—C11.399 (3)C22—H22A0.9600
C6—C71.461 (3)C22—H22B0.9600
C32—C311.418 (4)C22—H22C0.9600
C32—H320.9300C31—H310.9300
C10—N1—C13113.15 (17)N2—C21—H21B111.5
C10—N1—C9113.37 (17)C14—C21—H21B111.5
C13—N1—C9111.81 (18)H21A—C21—H21B109.3
C21—N2—C22117.14 (19)C8—C7—C6131.0 (2)
C21—N2—C23108.65 (18)C8—C7—H7114.5
C22—N2—C23117.80 (18)C6—C7—H7114.5
C12—C11—C10106.12 (17)C2—C1—C6121.6 (2)
C12—C11—C14113.47 (18)C2—C1—H1119.2
C10—C11—C14112.87 (17)C6—C1—H1119.2
C12—C11—C23110.21 (16)O2—C24—C25127.9 (2)
C10—C11—C23111.17 (17)O2—C24—C23123.8 (2)
C14—C11—C23103.08 (17)C25—C24—C23107.40 (18)
O1—C12—C8121.6 (2)C3—C2—C1119.2 (3)
O1—C12—C11121.6 (2)C3—C2—H2120.4
C8—C12—C11116.82 (18)C1—C2—H2120.4
N2—C23—C33111.81 (18)C31—C30—C29120.3 (2)
N2—C23—C24114.92 (18)C31—C30—H30119.8
C33—C23—C24101.28 (17)C29—C30—H30119.8
N2—C23—C11103.02 (16)C15—C20—C19121.3 (3)
C33—C23—C11114.38 (17)C15—C20—H20119.4
C24—C23—C11111.90 (17)C19—C20—H20119.4
C25—C34—C33113.3 (2)C4—C5—C6121.7 (3)
C25—C34—C29123.1 (2)C4—C5—H5119.2
C33—C34—C29123.5 (2)C6—C5—H5119.2
C15—C14—C21117.74 (18)C3—C4—C5119.3 (2)
C15—C14—C11117.01 (19)C3—C4—H4120.3
C21—C14—C11101.79 (18)C5—C4—H4120.3
C15—C14—H14106.5C28—C27—C26122.9 (3)
C21—C14—H14106.5C28—C27—H27118.5
C11—C14—H14106.5C26—C27—H27118.5
C20—C15—C16116.8 (2)C25—C26—C27117.4 (3)
C20—C15—C14123.6 (2)C25—C26—H26121.3
C16—C15—C14119.6 (2)C27—C26—H26121.3
C32—C33—C34118.9 (2)N1—C13—H13A109.5
C32—C33—C23131.5 (2)N1—C13—H13B109.5
C34—C33—C23109.56 (19)H13A—C13—H13B109.5
N1—C10—C11108.45 (17)N1—C13—H13C109.5
N1—C10—H10A110.0H13A—C13—H13C109.5
C11—C10—H10A110.0H13B—C13—H13C109.5
N1—C10—H10B110.0C17—C18—C19120.7 (2)
C11—C10—H10B110.0C17—C18—Cl2119.5 (2)
H10A—C10—H10B108.4C19—C18—Cl2119.7 (2)
N1—C9—C8112.94 (18)C4—C3—C2121.1 (2)
N1—C9—H9A109.0C4—C3—Cl1119.6 (2)
C8—C9—H9A109.0C2—C3—Cl1119.3 (2)
N1—C9—H9B109.0C15—C16—C17122.2 (2)
C8—C9—H9B109.0C15—C16—H16118.9
H9A—C9—H9B107.8C17—C16—H16118.9
C7—C8—C12116.1 (2)C18—C17—C16119.2 (3)
C7—C8—C9125.3 (2)C18—C17—H17120.4
C12—C8—C9118.53 (18)C16—C17—H17120.4
C5—C6—C1117.1 (2)C18—C19—C20119.8 (3)
C5—C6—C7117.9 (2)C18—C19—H19120.1
C1—C6—C7125.0 (2)C20—C19—H19120.1
C33—C32—C31118.7 (2)C34—C29—C28115.6 (2)
C33—C32—H32120.6C34—C29—C30115.9 (2)
C31—C32—H32120.6C28—C29—C30128.5 (2)
C26—C25—C34119.9 (2)N2—C22—H22A109.5
C26—C25—C24132.8 (2)N2—C22—H22B109.5
C34—C25—C24107.30 (19)H22A—C22—H22B109.5
C27—C28—C29121.0 (3)N2—C22—H22C109.5
C27—C28—H28119.5H22A—C22—H22C109.5
C29—C28—H28119.5H22B—C22—H22C109.5
N2—C21—C14101.25 (18)C30—C31—C32122.5 (3)
N2—C21—H21A111.5C30—C31—H31118.7
C14—C21—H21A111.5C32—C31—H31118.7
C10—C11—C12—O1−136.4 (2)C33—C34—C25—C26179.1 (2)
C14—C11—C12—O1−11.9 (3)C29—C34—C25—C261.3 (4)
C23—C11—C12—O1103.1 (2)C33—C34—C25—C240.0 (3)
C10—C11—C12—C844.5 (2)C29—C34—C25—C24−177.8 (2)
C14—C11—C12—C8168.98 (18)C22—N2—C21—C14−178.3 (2)
C23—C11—C12—C8−76.0 (2)C23—N2—C21—C1445.1 (2)
C21—N2—C23—C33−148.01 (19)C15—C14—C21—N2−174.89 (19)
C22—N2—C23—C3375.8 (3)C11—C14—C21—N2−45.6 (2)
C21—N2—C23—C2497.3 (2)C12—C8—C7—C6−177.0 (2)
C22—N2—C23—C24−39.0 (3)C9—C8—C7—C6−0.2 (4)
C21—N2—C23—C11−24.7 (2)C5—C6—C7—C8156.9 (3)
C22—N2—C23—C11−160.95 (19)C1—C6—C7—C8−25.3 (4)
C12—C11—C23—N2−126.14 (18)C5—C6—C1—C2−0.3 (4)
C10—C11—C23—N2116.48 (18)C7—C6—C1—C2−178.1 (2)
C14—C11—C23—N2−4.7 (2)C26—C25—C24—O2−16.8 (4)
C12—C11—C23—C33−4.6 (2)C34—C25—C24—O2162.2 (2)
C10—C11—C23—C33−121.96 (19)C26—C25—C24—C23174.4 (3)
C14—C11—C23—C33116.85 (19)C34—C25—C24—C23−6.7 (2)
C12—C11—C23—C24109.9 (2)N2—C23—C24—O2−38.6 (3)
C10—C11—C23—C24−7.5 (2)C33—C23—C24—O2−159.3 (2)
C14—C11—C23—C24−128.71 (18)C11—C23—C24—O278.5 (3)
C12—C11—C14—C15−80.6 (2)N2—C23—C24—C25130.85 (19)
C10—C11—C14—C1540.2 (3)C33—C23—C24—C2510.2 (2)
C23—C11—C14—C15160.19 (18)C11—C23—C24—C25−112.1 (2)
C12—C11—C14—C21149.59 (19)C6—C1—C2—C30.4 (4)
C10—C11—C14—C21−89.6 (2)C16—C15—C20—C19−1.6 (4)
C23—C11—C14—C2130.4 (2)C14—C15—C20—C19−179.0 (3)
C21—C14—C15—C2028.1 (3)C1—C6—C5—C40.1 (4)
C11—C14—C15—C20−93.8 (3)C7—C6—C5—C4178.1 (3)
C21—C14—C15—C16−149.2 (2)C6—C5—C4—C3−0.1 (4)
C11—C14—C15—C1689.0 (3)C29—C28—C27—C260.1 (5)
C25—C34—C33—C32−174.0 (2)C34—C25—C26—C271.4 (4)
C29—C34—C33—C323.8 (4)C24—C25—C26—C27−179.8 (3)
C25—C34—C33—C237.1 (3)C28—C27—C26—C25−2.1 (4)
C29—C34—C33—C23−175.1 (2)C5—C4—C3—C20.3 (4)
N2—C23—C33—C3248.1 (3)C5—C4—C3—Cl1−178.8 (2)
C24—C23—C33—C32171.0 (3)C1—C2—C3—C4−0.4 (4)
C11—C23—C33—C32−68.5 (3)C1—C2—C3—Cl1178.66 (19)
N2—C23—C33—C34−133.19 (19)C20—C15—C16—C171.9 (4)
C24—C23—C33—C34−10.3 (2)C14—C15—C16—C17179.4 (3)
C11—C23—C33—C34110.2 (2)C19—C18—C17—C160.3 (5)
C13—N1—C10—C11−162.47 (19)Cl2—C18—C17—C16178.8 (2)
C9—N1—C10—C1168.8 (2)C15—C16—C17—C18−1.3 (5)
C12—C11—C10—N1−64.3 (2)C17—C18—C19—C200.0 (5)
C14—C11—C10—N1170.79 (17)Cl2—C18—C19—C20−178.6 (2)
C23—C11—C10—N155.5 (2)C15—C20—C19—C180.7 (5)
C10—N1—C9—C8−46.6 (3)C25—C34—C29—C28−3.1 (4)
C13—N1—C9—C8−175.97 (19)C33—C34—C29—C28179.3 (2)
O1—C12—C8—C7−28.8 (3)C25—C34—C29—C30176.0 (2)
C11—C12—C8—C7150.3 (2)C33—C34—C29—C30−1.5 (4)
O1—C12—C8—C9154.2 (2)C27—C28—C29—C342.4 (4)
C11—C12—C8—C9−26.7 (3)C27—C28—C29—C30−176.6 (3)
N1—C9—C8—C7−151.4 (2)C31—C30—C29—C34−1.7 (4)
N1—C9—C8—C1225.3 (3)C31—C30—C29—C28177.4 (3)
C34—C33—C32—C31−2.7 (4)C29—C30—C31—C322.7 (5)
C23—C33—C32—C31175.9 (2)C33—C32—C31—C30−0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7···O10.932.402.783 (3)104
C14—H14···O10.982.442.818 (3)102
C22—H22C···O20.962.563.101 (3)116
C26—H26···O1i0.932.383.307 (3)176
C21—H21B···Cg1ii0.972.733.559 (3)144

Symmetry codes: (i) x−1, y, z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2624).

References

  • Babu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett.48, 305–308.
  • Boruah, M., Konwar, D. & Sharma, S. D. (2007). Tetrahedron Lett.48, 4535–4537.
  • Bruker (2000). SHELXTL/PC Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem.40, 1143–1148. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Horri, S., Fukase, H., Matsuo, T., Kameda, Y., Asano, N. & Matsui, K. (1986). J. Med. Chem.29, 1038–1046. [PubMed]
  • Karthikeyan, K., Perumal, P. T., Etti, S. & Shanmugam, G. (2007). Tetrahedron, 63, 10581–10586.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography