PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o95–o96.
Published online 2007 December 6. doi:  10.1107/S1600536807061387
PMCID: PMC2915050

1′-Methyl-4′-(1-naphth­yl)-3′′-(1-naphthyl­methyl­ene)acenaphthene-1-spiro-2′-pyrrolidine-3′-spiro-1′′-cyclo­hexane-2,2′′-dione

Abstract

In the title compound, C42H33NO2, the six-membered cyclo­hexa­none ring adopts a slightly distorted chair conformation and the five-membered pyrrolidine ring is in an envelope conformation. The mol­ecular structure features four intra­molecular C—H(...)O inter­actions and an intra­molecular C—H(...)π inter­action. Furthermore, the crystal packing is stabilized by an inter­molecular C—H(...)O and three inter­molecular C—H(...)π inter­actions.

Related literature

For the biological importance of pyran derivatives, see: Babu & Raghunathan (2007 [triangle]); Chande et al. (2005 [triangle]); De March et al. (2002 [triangle]); Escolano & Jones (2000 [triangle]); Fejes et al. (2001 [triangle]); Poornachandran & Raghunathan (2006 [triangle]); Raj & Raghunathan (2001 [triangle]); Raj et al. (2003 [triangle]); Pinna et al. (2002 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]). For hydrogen-bonding inter­actions, see: Desiraju & Steiner (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o95-scheme1.jpg

Experimental

Crystal data

  • C42H33NO2
  • M r = 583.69
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o95-efi1.jpg
  • a = 12.4398 (8) Å
  • b = 17.3501 (11) Å
  • c = 14.4685 (9) Å
  • β = 90.728 (17)°
  • V = 3122.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 293 (2) K
  • 0.22 × 0.18 × 0.16 mm

Data collection

  • Nonius MACH3 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.943, T max = 0.986
  • 6169 measured reflections
  • 5489 independent reflections
  • 3098 reflections with I > 2σ(I)
  • R int = 0.022
  • 3 standard reflections frequency: 60 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.164
  • S = 1.02
  • 5489 reflections
  • 407 parameters
  • H-atom parameters constrained
  • Δρmax = 0.31 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 Express; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXTL/PC (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL/PC; molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL/PC.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061387/sj2436sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061387/sj2436Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SA and SAB sincerely thank the Vice Chancellor and management of the Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement.

supplementary crystallographic information

Comment

1,3-Dipolar cycloaddition of azomethine ylides to alkenes affords pyrrolidines with high selectivities. Azomethine ylides are reactive and versatile 1,3-dipoles, which react readily with diverse dipolarophiles affording pyrrolizines, pyrrolidines and pyrazolidines (Fejes et al., 2001; De March et al., 2002). Pyrrolidine derivatives are widely used as organic catalysts and also serve as important structural units in biologically active molecules. Pyrrolidine derivatives, apart from displaying important biological activities (Pinna et al., 2002; Escolano & Jones, 2000), are present in natural products such as cephalotoxin, kainic acid, domoic acid and quinocarcin. The cycloaddition of azomethine ylides to dipolarophiles with exocyclic double bonds affords spiro-pyrrolidines (Raj & Raghunathan, 2001; Poornachandran & Raghunathan, 2006), which display important biological activities (Raj et al., 2003). Synthesis of spiro compounds has drawn considerable attention from chemists, in view of their very good antimycobacterial activity (Chande et al., 2005). Acenaphthenequinone is a versatile precursor for azomethine ylide cycloaddition as it reacts with various α-amino acids generating reactive 1,3-dipoles (Babu & Raghunathan, 2007).

In the title compound (I), Fig. 1, the six-membered cyclohexanone ring adopts a slightly distorted chair conformation [q2=0.283 (3) Å, π2=202.3 (5)° and q3=0.419 (3) Å; Cremer & Pople, 1975] and the five-membered pyrrolidine ring is in envelope conformation [q2=0.401 (3) Å and π2=351.5 (4)°; Cremer & Pople, 1975] (Fig. 1). The dihedral angles between the acenaphthene group and the planes through the naphthyl rings are observed to be 78.7 (1) and 33.2 (1)°. Planes through the naphthyl units themselves are oriented at a dihedral angle of 68.3 (1)°.

The molecular structure features four C—H···O and a C—H···π intramolecular interactions (Desiraju & Steiner, 1999) and the crystal packing is further stabilized by a C—H···O and three C—H···π intermolecular interactions (Fig 2; Table 1). The centroids in detailed in Table 1 are identified as follows: Cg1 - ring C7/C70–72/C80; Cg2 - ring C95–100; Cg3 - ring C26–31; Cg4 - ring C72–76/80.

Experimental

A mixture of 2,6-bis[(E)-1-naphthylmethylidene] cyclohexanone (1 mmol), acenaphthenequinone (1 mmol) and sarcosine (1 mmol) was dissolved in methanol (10 ml) and refluxed for 1 h. After completion of the reaction as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure 1-methyl-4-(1-naphthyl)-pyrrolo-(spiro-[2.2"]-acenaphthene-1'-one) -spiro[3.3']-6'-(1-naphthyl)methylidenecyclohexanone as yellow solid. The compound was recrystallized from a 1:1 mixture of methanol:ethyl acetate and a yellow solid is obtained, Yield 98%

Refinement

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.97 Å and N—H = 0.86 Å and Uiso(H) = 1.2–1.5 Ueq (parent atom).

Figures

Fig. 1.
The molecular structure of the title compound (I) with the numbering scheme for the atoms and 50% probability displacement ellipsoids. H atoms are omitted for clarity.
Fig. 2.
Packing diagram of the molecules, viewed down the a-axis.

Crystal data

C42H33NO2F000 = 1232
Mr = 583.69Dx = 1.242 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.4398 (8) Åθ = 9.4–13.6º
b = 17.3501 (11) ŵ = 0.08 mm1
c = 14.4685 (9) ÅT = 293 (2) K
β = 90.728 (17)ºBlock, pale yellow
V = 3122.5 (3) Å30.22 × 0.18 × 0.16 mm
Z = 4

Data collection

Nonius MACH3 sealed tube diffractometerRint = 0.022
Radiation source: fine-focus sealed tubeθmax = 25.0º
Monochromator: graphiteθmin = 2.0º
T = 293(2) Kh = 0→14
ω–2θ scansk = −1→20
Absorption correction: ψ scan(North et al., 1968)l = −17→17
Tmin = 0.943, Tmax = 0.9863 standard reflections
6169 measured reflections every 60 min
5489 independent reflections intensity decay: none
3098 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.164  w = 1/[σ2(Fo2) + (0.0776P)2 + 0.7574P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5489 reflectionsΔρmax = 0.31 e Å3
407 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C310.40070 (19)0.14164 (18)1.02686 (18)0.0648 (7)
C230.4443 (2)0.26622 (19)0.9649 (2)0.0809 (8)
H230.46090.29770.91500.097*
C960.4902 (5)0.3913 (2)0.4021 (3)0.1277 (18)
H960.47490.43540.36800.153*
C260.3922 (2)0.1747 (2)1.1160 (2)0.0769 (8)
C10.4091 (2)0.13447 (13)0.69369 (16)0.0542 (6)
C760.1547 (2)−0.07341 (14)0.80960 (19)0.0681 (7)
C800.1785 (2)−0.02788 (13)0.73238 (17)0.0573 (6)
C220.4280 (2)0.18940 (17)0.95041 (18)0.0653 (7)
C950.4139 (4)0.3296 (2)0.4043 (2)0.0971 (11)
C270.3649 (3)0.1256 (3)1.1910 (2)0.1050 (12)
H270.36050.14621.25020.126*
O10.11519 (16)0.06038 (12)0.52182 (13)0.0769 (5)
C980.6076 (3)0.3212 (2)0.5014 (3)0.1121 (13)
H980.67280.31830.53340.135*
C990.5353 (3)0.26097 (18)0.5068 (2)0.0833 (9)
H990.55230.21820.54290.100*
C70.27886 (19)0.04002 (13)0.61796 (16)0.0553 (6)
C20.37832 (18)0.17015 (14)0.78418 (16)0.0539 (6)
N20.34277 (17)0.00032 (12)0.54755 (15)0.0670 (6)
C290.3521 (3)0.0180 (2)1.0906 (2)0.0988 (10)
H290.3383−0.03421.08180.119*
C210.4406 (2)0.15553 (16)0.85697 (18)0.0654 (7)
H210.49710.12110.84890.079*
C250.4114 (2)0.2541 (3)1.1274 (2)0.0935 (11)
H250.40690.27601.18590.112*
C280.3450 (3)0.0490 (3)1.1782 (3)0.1136 (13)
H280.32690.01791.22800.136*
C50.2369 (2)0.18867 (14)0.62718 (16)0.0554 (6)
H5A0.26760.23830.61140.067*
H5B0.17830.17850.58400.067*
C80.3543 (2)0.05347 (16)0.47035 (19)0.0742 (8)
H8A0.28810.05730.43450.089*
H8B0.41190.03750.43000.089*
C30.2801 (2)0.22026 (16)0.78963 (17)0.0640 (7)
H3A0.29940.27300.77480.077*
H3B0.25330.21950.85230.077*
C920.2646 (3)0.2095 (2)0.4123 (2)0.0912 (10)
H920.21420.16990.41430.109*
C300.3787 (2)0.06225 (19)1.0169 (2)0.0760 (8)
H300.38260.03980.95860.091*
C750.0458 (3)−0.09408 (18)0.8194 (2)0.0869 (9)
H750.0254−0.12310.87020.104*
C74−0.0301 (3)−0.07252 (19)0.7561 (3)0.0910 (10)
H74−0.1010−0.08770.76470.109*
C720.1000 (2)−0.00583 (15)0.66737 (17)0.0603 (6)
C710.1555 (2)0.03648 (14)0.59335 (18)0.0589 (6)
C940.3165 (5)0.3341 (3)0.3563 (3)0.1228 (17)
H940.30220.37790.32120.147*
C930.2409 (4)0.2770 (3)0.3584 (2)0.1118 (13)
H930.17620.28180.32600.134*
C90.3810 (2)0.12982 (14)0.51825 (17)0.0609 (7)
H90.45850.12920.53110.073*
C240.4365 (2)0.2991 (2)1.0536 (3)0.0944 (11)
H240.44850.35161.06180.113*
C970.5839 (5)0.3858 (3)0.4489 (4)0.143 (2)
H970.63340.42590.44590.171*
C1000.4371 (3)0.26315 (16)0.45885 (19)0.0763 (9)
C60.32354 (19)0.12593 (13)0.61563 (15)0.0528 (6)
C73−0.0050 (2)−0.02810 (17)0.6779 (2)0.0769 (8)
H73−0.0578−0.01430.63490.092*
C910.3588 (2)0.20153 (16)0.46075 (18)0.0699 (8)
C40.19211 (19)0.19324 (15)0.72368 (16)0.0580 (6)
H4A0.16630.14300.74250.070*
H4B0.13220.22900.72470.070*
C770.2434 (3)−0.09586 (15)0.8653 (2)0.0808 (9)
H770.2324−0.12360.91940.097*
C780.3445 (3)−0.07686 (16)0.8400 (2)0.0829 (9)
H780.4019−0.09430.87610.100*
C790.3667 (2)−0.03199 (15)0.7614 (2)0.0736 (8)
H790.4372−0.02090.74560.088*
C700.2830 (2)−0.00505 (13)0.70856 (17)0.0572 (6)
C100.3049 (3)−0.07619 (17)0.5196 (2)0.0916 (10)
H10A0.2343−0.07200.49250.137*
H10B0.3023−0.10920.57280.137*
H10C0.3532−0.09760.47530.137*
O20.50114 (14)0.11274 (11)0.68220 (12)0.0725 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C310.0473 (14)0.090 (2)0.0573 (16)0.0081 (13)−0.0047 (11)−0.0089 (15)
C230.081 (2)0.082 (2)0.079 (2)−0.0038 (16)−0.0039 (16)−0.0090 (17)
C960.202 (5)0.071 (3)0.113 (4)0.006 (3)0.079 (4)0.021 (2)
C260.0566 (16)0.111 (3)0.0627 (18)0.0165 (16)−0.0038 (13)−0.0151 (18)
C10.0554 (15)0.0486 (14)0.0588 (15)−0.0017 (11)0.0139 (11)0.0046 (11)
C760.095 (2)0.0458 (14)0.0639 (17)−0.0112 (14)0.0151 (15)−0.0039 (13)
C800.0722 (17)0.0434 (13)0.0566 (15)−0.0049 (12)0.0085 (13)−0.0059 (12)
C220.0543 (15)0.0771 (19)0.0642 (17)0.0040 (13)−0.0078 (12)−0.0079 (15)
C950.145 (3)0.072 (2)0.076 (2)0.024 (2)0.050 (2)0.0145 (18)
C270.091 (2)0.165 (4)0.060 (2)0.020 (3)0.0118 (17)−0.009 (2)
O10.0827 (13)0.0851 (13)0.0625 (12)−0.0054 (10)−0.0116 (10)0.0023 (10)
C980.121 (3)0.087 (3)0.130 (3)−0.026 (2)0.062 (2)−0.022 (2)
C990.090 (2)0.0696 (19)0.092 (2)−0.0005 (17)0.0401 (19)−0.0078 (16)
C70.0601 (15)0.0514 (14)0.0547 (14)−0.0004 (11)0.0092 (11)−0.0004 (11)
C20.0542 (14)0.0565 (15)0.0513 (14)−0.0078 (12)0.0064 (11)0.0007 (11)
N20.0743 (14)0.0531 (12)0.0740 (14)0.0009 (11)0.0165 (11)−0.0073 (11)
C290.099 (2)0.110 (3)0.088 (2)0.001 (2)0.0126 (19)0.013 (2)
C210.0592 (15)0.0738 (18)0.0633 (16)0.0051 (13)0.0011 (13)−0.0059 (14)
C250.071 (2)0.129 (3)0.080 (2)0.012 (2)−0.0083 (17)−0.039 (2)
C280.109 (3)0.148 (4)0.084 (3)0.015 (3)0.023 (2)0.025 (3)
C50.0639 (15)0.0500 (14)0.0525 (14)0.0019 (11)0.0053 (11)0.0007 (11)
C80.086 (2)0.0732 (19)0.0637 (17)−0.0031 (15)0.0229 (15)−0.0104 (14)
C30.0688 (16)0.0680 (17)0.0553 (15)0.0050 (13)0.0086 (12)−0.0020 (13)
C920.110 (3)0.106 (3)0.0574 (17)0.025 (2)0.0134 (17)0.0077 (17)
C300.0715 (18)0.090 (2)0.0669 (18)0.0040 (16)0.0056 (14)−0.0005 (16)
C750.110 (3)0.0688 (19)0.082 (2)−0.0224 (19)0.030 (2)−0.0024 (17)
C740.082 (2)0.090 (2)0.102 (3)−0.0288 (19)0.036 (2)−0.019 (2)
C720.0638 (16)0.0558 (15)0.0615 (15)−0.0080 (12)0.0086 (12)−0.0101 (12)
C710.0660 (16)0.0539 (15)0.0568 (15)−0.0013 (12)0.0014 (12)−0.0084 (13)
C940.190 (5)0.104 (3)0.076 (2)0.057 (3)0.057 (3)0.029 (2)
C930.134 (3)0.134 (4)0.068 (2)0.052 (3)0.020 (2)0.011 (2)
C90.0692 (16)0.0583 (16)0.0556 (15)−0.0022 (12)0.0161 (12)−0.0016 (12)
C240.076 (2)0.092 (2)0.115 (3)0.0027 (18)−0.014 (2)−0.038 (2)
C970.194 (6)0.089 (3)0.147 (5)−0.026 (4)0.082 (4)−0.004 (3)
C1000.110 (2)0.0607 (18)0.0590 (17)0.0103 (17)0.0449 (17)0.0025 (14)
C60.0600 (14)0.0499 (14)0.0486 (13)−0.0029 (11)0.0101 (11)0.0006 (11)
C730.0668 (18)0.083 (2)0.082 (2)−0.0135 (15)0.0081 (15)−0.0172 (17)
C910.088 (2)0.0700 (18)0.0520 (15)0.0099 (16)0.0259 (15)0.0033 (13)
C40.0556 (14)0.0620 (15)0.0566 (14)0.0066 (12)0.0081 (11)0.0004 (12)
C770.130 (3)0.0462 (16)0.0663 (18)−0.0080 (17)0.0000 (19)0.0075 (13)
C780.109 (3)0.0551 (17)0.084 (2)0.0058 (17)−0.0210 (19)0.0105 (16)
C790.0805 (19)0.0548 (16)0.085 (2)0.0013 (14)−0.0076 (16)0.0097 (15)
C700.0646 (16)0.0441 (13)0.0628 (15)−0.0005 (12)0.0034 (12)0.0024 (12)
C100.105 (2)0.0616 (19)0.109 (3)−0.0059 (17)0.0251 (19)−0.0234 (17)
O20.0570 (11)0.0907 (14)0.0700 (12)0.0072 (10)0.0124 (9)−0.0036 (10)

Geometric parameters (Å, °)

C31—C301.411 (4)C25—H250.9300
C31—C261.417 (4)C28—H280.9300
C31—C221.427 (4)C5—C41.512 (3)
C23—C221.364 (4)C5—C61.543 (3)
C23—C241.409 (4)C5—H5A0.9700
C23—H230.9300C5—H5B0.9700
C96—C971.344 (7)C8—C91.530 (4)
C96—C951.431 (6)C8—H8A0.9700
C96—H960.9300C8—H8B0.9700
C26—C251.407 (5)C3—C41.517 (3)
C26—C271.425 (5)C3—H3A0.9700
C1—O21.218 (3)C3—H3B0.9700
C1—C21.502 (3)C92—C911.365 (4)
C1—C61.549 (3)C92—C931.436 (5)
C76—C801.403 (3)C92—H920.9300
C76—C751.411 (4)C30—H300.9300
C76—C771.412 (4)C75—C741.359 (4)
C80—C721.401 (3)C75—H750.9300
C80—C701.405 (3)C74—C731.407 (4)
C22—C211.484 (4)C74—H740.9300
C95—C941.391 (6)C72—C731.373 (4)
C95—C1001.425 (4)C72—C711.477 (4)
C27—C281.363 (5)C94—C931.366 (6)
C27—H270.9300C94—H940.9300
O1—C711.217 (3)C93—H930.9300
C98—C991.381 (4)C9—C911.520 (4)
C98—C971.384 (6)C9—C61.589 (3)
C98—H980.9300C9—H90.9800
C99—C1001.398 (4)C24—H240.9300
C99—H990.9300C97—H970.9300
C7—N21.471 (3)C100—C911.447 (4)
C7—C701.527 (3)C73—H730.9300
C7—C711.572 (3)C4—H4A0.9700
C7—C61.591 (3)C4—H4B0.9700
C2—C211.324 (3)C77—C781.355 (4)
C2—C31.503 (3)C77—H770.9300
N2—C81.457 (3)C78—C791.408 (4)
N2—C101.464 (3)C78—H780.9300
C29—C301.358 (4)C79—C701.366 (3)
C29—C281.381 (5)C79—H790.9300
C29—H290.9300C10—H10A0.9600
C21—H210.9300C10—H10B0.9600
C25—C241.363 (5)C10—H10C0.9600
C30—C31—C26118.2 (3)H3A—C3—H3B108.0
C30—C31—C22122.3 (3)C91—C92—C93122.0 (4)
C26—C31—C22119.5 (3)C91—C92—H92119.0
C22—C23—C24121.6 (3)C93—C92—H92119.0
C22—C23—H23119.2C29—C30—C31121.3 (3)
C24—C23—H23119.2C29—C30—H30119.3
C97—C96—C95120.5 (5)C31—C30—H30119.3
C97—C96—H96119.7C74—C75—C76121.5 (3)
C95—C96—H96119.7C74—C75—H75119.2
C25—C26—C31119.2 (3)C76—C75—H75119.2
C25—C26—C27122.6 (3)C75—C74—C73122.2 (3)
C31—C26—C27118.2 (3)C75—C74—H74118.9
O2—C1—C2119.8 (2)C73—C74—H74118.9
O2—C1—C6120.6 (2)C73—C72—C80120.4 (3)
C2—C1—C6119.6 (2)C73—C72—C71132.4 (3)
C80—C76—C75115.8 (3)C80—C72—C71107.1 (2)
C80—C76—C77116.0 (3)O1—C71—C72126.5 (2)
C75—C76—C77128.1 (3)O1—C71—C7124.7 (2)
C72—C80—C76122.4 (2)C72—C71—C7108.6 (2)
C72—C80—C70113.4 (2)C93—C94—C95122.9 (4)
C76—C80—C70124.0 (2)C93—C94—H94118.5
C23—C22—C31119.0 (3)C95—C94—H94118.5
C23—C22—C21120.7 (3)C94—C93—C92117.9 (4)
C31—C22—C21120.3 (3)C94—C93—H93121.1
C94—C95—C100119.4 (4)C92—C93—H93121.1
C94—C95—C96121.4 (4)C91—C9—C8115.1 (2)
C100—C95—C96119.2 (4)C91—C9—C6116.1 (2)
C28—C27—C26121.6 (3)C8—C9—C6105.51 (19)
C28—C27—H27119.2C91—C9—H9106.5
C26—C27—H27119.2C8—C9—H9106.5
C99—C98—C97120.7 (5)C6—C9—H9106.5
C99—C98—H98119.7C25—C24—C23120.0 (3)
C97—C98—H98119.7C25—C24—H24120.0
C98—C99—C100121.1 (4)C23—C24—H24120.0
C98—C99—H99119.4C96—C97—C98120.7 (5)
C100—C99—H99119.4C96—C97—H97119.7
N2—C7—C70110.0 (2)C98—C97—H97119.7
N2—C7—C71111.06 (19)C99—C100—C95117.8 (3)
C70—C7—C71101.33 (19)C99—C100—C91123.7 (3)
N2—C7—C6103.41 (18)C95—C100—C91118.5 (3)
C70—C7—C6119.34 (19)C5—C6—C1109.17 (19)
C71—C7—C6111.84 (19)C5—C6—C9112.88 (19)
C21—C2—C1117.4 (2)C1—C6—C9109.24 (19)
C21—C2—C3122.5 (2)C5—C6—C7114.45 (19)
C1—C2—C3120.1 (2)C1—C6—C7108.13 (18)
C8—N2—C10113.4 (2)C9—C6—C7102.69 (18)
C8—N2—C7107.08 (19)C72—C73—C74117.7 (3)
C10—N2—C7116.2 (2)C72—C73—H73121.2
C30—C29—C28121.3 (4)C74—C73—H73121.2
C30—C29—H29119.3C92—C91—C100119.3 (3)
C28—C29—H29119.3C92—C91—C9120.8 (3)
C2—C21—C22125.5 (2)C100—C91—C9119.8 (3)
C2—C21—H21117.2C5—C4—C3109.0 (2)
C22—C21—H21117.2C5—C4—H4A109.9
C24—C25—C26120.7 (3)C3—C4—H4A109.9
C24—C25—H25119.7C5—C4—H4B109.9
C26—C25—H25119.7C3—C4—H4B109.9
C27—C28—C29119.4 (4)H4A—C4—H4B108.3
C27—C28—H28120.3C78—C77—C76119.9 (3)
C29—C28—H28120.3C78—C77—H77120.0
C4—C5—C6113.8 (2)C76—C77—H77120.0
C4—C5—H5A108.8C77—C78—C79123.0 (3)
C6—C5—H5A108.8C77—C78—H78118.5
C4—C5—H5B108.8C79—C78—H78118.5
C6—C5—H5B108.8C70—C79—C78119.0 (3)
H5A—C5—H5B107.7C70—C79—H79120.5
N2—C8—C9102.9 (2)C78—C79—H79120.5
N2—C8—H8A111.2C79—C70—C80117.8 (2)
C9—C8—H8A111.2C79—C70—C7132.3 (2)
N2—C8—H8B111.2C80—C70—C7109.5 (2)
C9—C8—H8B111.2N2—C10—H10A109.5
H8A—C8—H8B109.1N2—C10—H10B109.5
C2—C3—C4111.6 (2)H10A—C10—H10B109.5
C2—C3—H3A109.3N2—C10—H10C109.5
C4—C3—H3A109.3H10A—C10—H10C109.5
C2—C3—H3B109.3H10B—C10—H10C109.5
C4—C3—H3B109.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5B···O10.972.373.084 (3)130
C8—H8A···O10.972.513.078 (4)117
C9—H9···O20.982.262.803 (3)114
C21—H21···O20.932.422.750 (3)101
C73—H73···O1i0.932.503.231 (4)136
C4—H4A···Cg10.972.643.337 (3)129
C75—H75···Cg2ii0.932.743.646 (3)164
C78—H78···Cg3iii0.932.823.622 (4)145
C96—H96···Cg4iv0.932.963.742 (4)142

Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1/2, y−1/2, −z+3/2; (iii) −x+1, −y, −z+2; (iv) x+1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2436).

References

  • Babu, A. R. S. & Raghunathan, R. (2007). Tetrahedron Lett.48, 305–308.
  • Bruker (2000). SHELXTL/PC. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chande, M. S., Verma, R. S., Barve, P. A. & Khanwelkar, R. R. (2005). Eur. J. Med. Chem.40, 1143–1148. [PubMed]
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • De March, P., Elias, L., Figueredo, M. & Font, J. (2002). Tetrahedron, 58, 2667–2672.
  • Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology New York: Oxford University Press Inc.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Version 5.1/1.2. Enraf–Nonius, Delft, The Netherlands.
  • Escolano, C. & Jones, K. (2000). Tetrahedron Lett.41, 8951–8955.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Fejes, I., Nyerges, M., Szollosy, A., Blasko, G. & Toke, L. (2001). Tetrahedron, 57, 1129–1137.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Pinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., D’Aquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem.10, 2485–2496. [PubMed]
  • Poornachandran, M. & Raghunathan, R. (2006). Tetrahedron, 62, 11274–11281.
  • Raj, A. A. & Raghunathan, R. (2001). Tetrahedron, 57, 10293–10298.
  • Raj, A. A., Raghunathan, R., SrideviKumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem.11, 407–419. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography