PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o86.
Published online 2007 December 6. doi:  10.1107/S1600536807056279
PMCID: PMC2915042

N,N-Bis(2-bromo­ethyl)aniline

Abstract

The mol­ecule of the title compound, C10H13Br2N, has a twofold rotation axis along the N—Cphen­yl bond. The compound shows a slightly distorted trigonal planar geometry around the N atom. The structural study shows the presence of inter­molecular C—H(...)Br inter­actions, resulting in a three-dimensional supra­molecular architecture.

Related literature

For related literature, see: Bricks et al. (2005 [triangle]); Chapman & Triggle (1963 [triangle]); Ross (1949 [triangle]); Hartley et al. (2000 [triangle]); Palmer et al. (1990 [triangle]); Panthananickal et al. (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o86-scheme1.jpg

Experimental

Crystal data

  • C10H13Br2N
  • M r = 307.03
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o86-efi4.jpg
  • a = 13.682 (12) Å
  • b = 13.926 (12) Å
  • c = 12.215 (10) Å
  • V = 2327 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 6.92 mm−1
  • T = 297 (2) K
  • 0.27 × 0.23 × 0.09 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.155, T max = 0.534
  • 4145 measured reflections
  • 1191 independent reflections
  • 893 reflections with I > 2σ(I)
  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.088
  • S = 0.99
  • 1191 reflections
  • 61 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.61 e Å−3
  • Δρmin = −0.41 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 564 Friedel pairs
  • Flack parameter: 0.05 (3)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2000 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Bruker, 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg & Putz, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2007 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807056279/cf2168sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807056279/cf2168Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from CNCSIS 2/397/2007 is gratefully acknowledged. The authors also thank the National Center for X-Ray Diffraction, Cluj-Napoca, for help with the structure determination.

supplementary crystallographic information

Comment

N,N-Bis(2-halogenoalkyl)anilines are widely prepared compounds due to their potential pharmacological activity (Ross, 1949; Chapman & Triggle, 1963; Panthananickal et al., 1978; Palmer et al., 1990). The most common preparation method uses the corresponding alcohol, which upon reaction with a halogenating agent gives the desired aniline derivative (Ross, 1949; Chapman & Triggle, 1963). Some derivatives show anti-adrenaline and anti-noradrenalin activities and have also been investigated as anticancer drugs (Palmer et al., 1990). The great variety of obtainable derivatives upon changing the alkyl or the aryl group bonded to the nitrogen atom has made this type of compounds applicable as starting materials in the synthesis of macrocycles (Bricks et al., 2005; Hartley et al., 2000). The title compound was prepared according to a general method described in the literature starting from N,N-bis(2-hydroxyethyl)aniline, which was treated with PBr3 (Ross, 1949).

The isolated N,N-bis(2-bromoethyl)aniline crystallizes from benzene. The molecule has a twofold rotation axis through the N—Cphenyl bond (Fig. 1). The bond angles around the N1 atom [C1—N1—C5 = 120.7 (3)° and C5—N1—C5i 118.6 (6)°; symmetry code: (i) 0.5 - x, 0.5 - y, z] are consistent with a trigonal planar geometry and thus an sp2 nature can be considered due to conjugation with the phenyl ring. The sructural analysis shows the presence of intermolecular C—H···Br interactions in the crystal structure. One molecule of N,N-bis(2-bromoethyl)aniline forms interactions with four neighboring molecules [H5···Br1ii = 3.05 Å; symmetry code: (ii) -x + 3/4, y + 1/4, z - 1/4] (Fig. 2). These interactions result in a three-dimensional supramolecular architecture (Fig. 3).

Experimental

Colourless crystals of N,N-bis(2-bromoethyl)aniline, prepared according to the literature (Ross, 1949), were obtained from benzene. The compound was also characterized by 1H, 13C and two-dimensional NMR spectroscopy in CDCl3 solution. NMR data: 1H NMR (300 MHz): δ 3.47 (t, 4H, CH2Br, 3JHH = 7.4 Hz), 3.79 (t, 4H, CH2N, 3JHH = 7.4 Hz), 6.75 (d, 2H, Ho, 3JHH = 8.3 Hz), 6.84 (t, 1H, Hp, 3JHH = 7.3 Hz), 7.30 (m, 2H, Hm, 3JHH = 7.5 Hz); 13C NMR (75.5 MHz): δ 27.95 (s, CH2Br), 53.47 (s, CH2N), 112.35 (s, Co), 118.43 (s, Cp), 129.80 (s, Cm), 145.14 (s, Ci).

Refinement

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93 or 0.97 Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
: The molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have arbitrary radii. Symmetry code: (i) 0.5 - x, 0.5 - y, z.
Fig. 2.
: Hydrogen-bonded framework (dashed lines) in the title compound. Symmetry codes: (i) 0.5 - x, 0.5 - y, z; (ii) -x + 3/4, y + 1/4, z - 1/4.
Fig. 3.
: The crystal packing of the title compound, with hydrogen bonds shown as dashed lines.

Crystal data

C10H13Br2NF000 = 1200
Mr = 307.03Dx = 1.752 Mg m3
Orthorhombic, Fdd2Mo Kα radiation λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1908 reflections
a = 13.682 (12) Åθ = 2.7–24.3º
b = 13.926 (12) ŵ = 6.92 mm1
c = 12.215 (10) ÅT = 297 (2) K
V = 2327 (3) Å3Block, colourless
Z = 80.27 × 0.23 × 0.09 mm

Data collection

Bruker SMART APEX diffractometer1191 independent reflections
Radiation source: fine-focus sealed tube893 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.047
T = 297(2) Kθmax = 26.4º
[var phi] and ω scansθmin = 2.7º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −17→17
Tmin = 0.155, Tmax = 0.534k = −17→17
4145 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037  w = 1/[σ2(Fo2) + (0.0396P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088(Δ/σ)max < 0.001
S = 0.99Δρmax = 0.61 e Å3
1191 reflectionsΔρmin = −0.41 e Å3
61 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983), 564 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.05 (3)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C60.4227 (4)0.2321 (4)0.3885 (5)0.0665 (14)
H6A0.44580.22500.46320.080*
H6B0.47290.26530.34720.080*
C50.3302 (4)0.2919 (4)0.3884 (4)0.0595 (14)
H5A0.34480.35440.41930.071*
H5B0.30970.30160.31320.071*
Br10.40184 (5)0.10577 (5)0.32538 (10)0.0854 (3)
C10.25000.25000.5638 (6)0.0453 (14)
N10.25000.25000.4487 (4)0.0521 (13)
C20.3190 (3)0.3010 (4)0.6240 (4)0.0569 (13)
H20.36690.33560.58710.068*
C30.3183 (5)0.3014 (4)0.7376 (5)0.0687 (16)
H30.36490.33710.77530.082*
C40.25000.25000.7949 (7)0.074 (2)
H40.25000.25000.87100.089*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C60.053 (3)0.067 (3)0.079 (4)−0.001 (2)0.012 (3)−0.004 (3)
C50.071 (3)0.052 (3)0.056 (3)0.007 (3)0.008 (3)0.008 (2)
Br10.0888 (4)0.0783 (4)0.0891 (4)0.0256 (3)0.0001 (4)−0.0161 (4)
C10.047 (3)0.036 (3)0.053 (4)0.012 (3)0.0000.000
N10.044 (3)0.062 (3)0.051 (3)0.000 (3)0.0000.000
C20.045 (3)0.051 (3)0.075 (3)−0.004 (2)−0.004 (2)−0.007 (3)
C30.061 (3)0.069 (4)0.076 (4)0.015 (3)−0.025 (3)−0.014 (3)
C40.078 (6)0.083 (6)0.062 (5)0.019 (5)0.0000.000

Geometric parameters (Å, °)

C6—C51.515 (7)C1—C21.391 (6)
C6—Br11.942 (6)C1—N11.406 (9)
C6—H6A0.970C2—C31.388 (8)
C6—H6B0.970C2—H20.930
C5—N11.445 (6)C3—C41.370 (8)
C5—H5A0.970C3—H30.930
C5—H5B0.970C4—H40.930
C5—C6—Br1112.0 (4)C2—C1—N1121.9 (3)
C5—C6—H6A109.2C1—N1—C5120.7 (3)
Br1—C6—H6A109.2C1—N1—C5i120.7 (3)
C5—C6—H6B109.2C5—N1—C5i118.6 (6)
Br1—C6—H6B109.2C3—C2—C1121.7 (5)
H6A—C6—H6B107.9C3—C2—H2119.1
N1—C5—C6114.3 (4)C1—C2—H2119.1
N1—C5—H5A108.7C4—C3—C2120.9 (6)
C6—C5—H5A108.7C4—C3—H3119.6
N1—C5—H5B108.7C2—C3—H3119.6
C6—C5—H5B108.7C3—C4—C3i118.6 (8)
H5A—C5—H5B107.6C3—C4—H4120.7
C2i—C1—C2116.2 (7)C3i—C4—H4120.7
C2i—C1—N1121.9 (3)
Br1—C6—C5—N159.5 (6)C6—C5—N1—C5i−105.7 (5)
C2i—C1—N1—C5−171.0 (3)C2i—C1—C2—C3−0.5 (4)
C2—C1—N1—C59.0 (3)N1—C1—C2—C3179.5 (4)
C2i—C1—N1—C5i8.9 (3)C1—C2—C3—C41.1 (7)
C2—C1—N1—C5i−171.1 (3)C2—C3—C4—C3i−0.5 (4)
C6—C5—N1—C174.3 (5)

Symmetry codes: (i) −x+1/2, −y+1/2, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5B···Br1ii0.973.053.933 (6)153

Symmetry codes: (ii) −x+3/4, y+1/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2168).

References

  • Brandenburg, K. & Putz, H. (2006). DIAMOND. Version 3. Crystal Impact GbR, Bonn, Germany.
  • Bricks, J. L., Kovalchuk, A., Trieflinger, Ch., Nofz, M., Büschel, M., Tolmachev, A. I., Daub, J. & Rurack, K. (2005). J. Am. Chem. Soc.127, 13522–13529. [PubMed]
  • Bruker (2000). SMART (Version 5.054), SAINT-Plus (Version 6.22) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2001). SHELXTL Version 6.10.12, Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chapman, N. B. & Triggle, D. J. (1963). J. Chem. Soc. pp. 1385–1400.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hartley, J. H., James, T. D. & Christopher, J. W. (2000). J. Chem. Soc., Perkin Trans. 1, pp. 3155–3184.
  • Palmer, B. D., Wilson, W. R., Pullen, S. M. & Denny, W. A. (1990). J. Med. Chem.33, 112–121. [PubMed]
  • Panthananickal, A., Hansch, C., Leo, A. & Quinn, F. R. (1978). J. Med. Chem.21, 16–26. [PubMed]
  • Ross, W. C. J. (1949). J. Chem. Soc. pp. 183–191.
  • Westrip, S. P. (2007). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography