PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o85.
Published online 2007 December 6. doi:  10.1107/S1600536807062563
PMCID: PMC2915041

2-Chloro-N-(2,4-dimethyl­phen­yl)acetamide

Abstract

The conformation of the N—H bond in the structure of the title compound, C10H12ClNO, is syn to the ortho methyl group, similar to that observed with respect to the meta methyl group in 2-chloro-N-(3-methyl­phen­yl)acetamide and the ortho-chloro group in 2-chloro-N-(2-chloro­phen­yl)acetamide. The geometric parameters are similar to those of other acetanilides. The mol­ecules are linked into chains through inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Gowda et al. (2007a [triangle],b [triangle],c [triangle],d [triangle],e [triangle],f [triangle], 2008 [triangle]); Shilpa & Gowda (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o85-scheme1.jpg

Experimental

Crystal data

  • C10H12ClNO
  • M r = 197.66
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o85-efi1.jpg
  • a = 4.7235 (7) Å
  • b = 10.407 (2) Å
  • c = 11.451 (2) Å
  • α = 67.07 (2)°
  • β = 86.84 (1)°
  • γ = 78.95 (2)°
  • V = 508.69 (15) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 3.00 mm−1
  • T = 299 (2) K
  • 0.60 × 0.06 × 0.04 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.803, T max = 0.895
  • 2059 measured reflections
  • 1817 independent reflections
  • 1394 reflections with I > 2σ(I)
  • R int = 0.015
  • 3 standard reflections frequency: 120 min intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.190
  • S = 1.09
  • 1817 reflections
  • 123 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.45 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CAD-4-PC (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062563/bt2650sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062563/bt2650Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of 2-chloro-N-(2,4-dimethylphenyl)- acetamide (24DMPCA) has been determined as part of a study of the effect of ring and side chain substitutions on the solid state geometry of aromatic amides (Gowda et al., 2007a, b, c, d, e). The conformation of the N—H bond in the structure of 24DMPCA is syn to the ortho methyl group (Fig. 1), similar to that observed with respect to the meta methyl group in the 2-chloro- N-(3-methylphenyl)acetamide (3MPCA)(Gowda et al., 2007e). and ortho chloro group in the 2-chloro-N-(2-chlorophenyl)- acetamide(2CPCA)(Gowda et al., 2007d). The geometric parameters in 24DMPCA are similar to those in 3MPCA (Gowda et al., 2007e), 2CPCA (Gowda et al., 2007d), 2-chloro-N-(4-methylphenyl)- acetamide (Gowda et al., 2007b), 2-chloro-N- (4-chlorophenyl)-acetamide (Gowda et al., 2007c) and other acetanilides (Gowda et al. , 2007a). The molecules in the structure are linked into chains through intermolecular N—H···O hydrogen bonding (Table 1 and Fig.2).

Experimental

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å. The NH atom was located in difference map and its coordinates were refined. Uiso(H) values were set equal to 1.2 Ueq(C,N) or 1.2 Ueq(Cmethyl).

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H12ClNOZ = 2
Mr = 197.66F000 = 208
Triclinic, P1Dx = 1.290 Mg m3
Hall symbol: -P 1Cu Kα radiation λ = 1.54180 Å
a = 4.7235 (7) ÅCell parameters from 25 reflections
b = 10.407 (2) Åθ = 4.2–26.4º
c = 11.451 (2) ŵ = 3.00 mm1
α = 67.07 (2)ºT = 299 (2) K
β = 86.84 (1)ºNeedle, colourless
γ = 78.95 (2)º0.60 × 0.06 × 0.04 mm
V = 508.69 (15) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.015
Radiation source: fine-focus sealed tubeθmax = 66.9º
Monochromator: graphiteθmin = 4.2º
T = 299(2) Kh = 0→5
ω/2θ scansk = −12→12
Absorption correction: ψ scanNorth et al. (1968)l = −13→13
Tmin = 0.803, Tmax = 0.8953 standard reflections
2059 measured reflections every 120 min
1817 independent reflections intensity decay: 1.0%
1394 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.190  w = 1/[σ2(Fo2) + (0.1035P)2 + 0.2646P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.044
1817 reflectionsΔρmax = 0.45 e Å3
123 parametersΔρmin = −0.47 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.5208 (2)−0.02640 (14)0.75189 (11)0.1062 (6)
O10.2611 (4)0.1946 (3)0.5165 (2)0.0695 (8)
N10.6642 (5)0.2847 (3)0.4451 (2)0.0411 (6)
H1N0.842 (8)0.271 (3)0.453 (3)0.049*
C10.5306 (5)0.4140 (3)0.3481 (3)0.0380 (6)
C20.6351 (5)0.4545 (3)0.2256 (3)0.0426 (7)
C30.5019 (7)0.5837 (3)0.1357 (3)0.0520 (8)
H30.57110.61300.05360.062*
C40.2697 (7)0.6709 (3)0.1634 (3)0.0539 (8)
C50.1706 (7)0.6261 (3)0.2857 (3)0.0536 (8)
H50.01420.68220.30620.064*
C60.2985 (6)0.5003 (3)0.3774 (3)0.0461 (7)
H60.23000.47240.45970.055*
C70.5218 (5)0.1865 (3)0.5227 (3)0.0449 (7)
C80.7104 (6)0.0592 (4)0.6200 (3)0.0590 (9)
H8A0.86810.09010.64620.071*
H8B0.7927−0.00720.58120.071*
C90.8830 (7)0.3623 (4)0.1907 (3)0.0569 (8)
H9A1.05650.35900.23250.085*
H9B0.90690.40110.10060.085*
H9C0.84350.26810.21680.085*
C100.1310 (10)0.8109 (4)0.0632 (4)0.0815 (12)
H10A0.27750.85600.01040.122*
H10B0.02870.87120.10320.122*
H10C−0.00130.79440.01210.122*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0551 (6)0.1112 (9)0.0893 (8)−0.0082 (5)0.0147 (5)0.0236 (6)
O10.0134 (9)0.0749 (15)0.0926 (17)−0.0115 (9)−0.0051 (10)−0.0006 (13)
N10.0138 (9)0.0512 (13)0.0519 (13)−0.0051 (9)−0.0010 (9)−0.0132 (11)
C10.0211 (12)0.0446 (15)0.0476 (15)−0.0062 (10)−0.0031 (10)−0.0166 (12)
C20.0263 (13)0.0534 (17)0.0504 (15)−0.0104 (11)0.0017 (11)−0.0213 (13)
C30.0456 (17)0.0573 (18)0.0484 (16)−0.0122 (14)−0.0006 (13)−0.0141 (14)
C40.0493 (18)0.0474 (17)0.0599 (18)−0.0044 (13)−0.0087 (14)−0.0160 (14)
C50.0394 (16)0.0548 (18)0.0628 (19)0.0047 (13)−0.0037 (13)−0.0242 (15)
C60.0278 (13)0.0567 (17)0.0503 (16)−0.0021 (12)0.0016 (11)−0.0195 (13)
C70.0174 (12)0.0522 (16)0.0586 (17)−0.0060 (11)−0.0004 (11)−0.0147 (13)
C80.0233 (13)0.0593 (19)0.073 (2)−0.0076 (12)−0.0009 (13)−0.0021 (16)
C90.0369 (16)0.072 (2)0.0603 (18)−0.0050 (14)0.0090 (14)−0.0270 (16)
C100.087 (3)0.059 (2)0.075 (2)0.006 (2)−0.009 (2)−0.0087 (19)

Geometric parameters (Å, °)

Cl1—C81.728 (3)C5—C61.371 (4)
O1—C71.223 (3)C5—H50.9300
N1—C71.333 (4)C6—H60.9300
N1—C11.425 (3)C7—C81.516 (4)
N1—H1N0.83 (4)C8—H8A0.9700
C1—C21.389 (4)C8—H8B0.9700
C1—C61.392 (4)C9—H9A0.9600
C2—C31.390 (4)C9—H9B0.9600
C2—C91.506 (4)C9—H9C0.9600
C3—C41.390 (5)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.378 (5)C10—H10C0.9600
C4—C101.511 (5)
C7—N1—C1124.3 (2)O1—C7—N1123.9 (3)
C7—N1—H1N119 (2)O1—C7—C8121.4 (3)
C1—N1—H1N117 (2)N1—C7—C8114.6 (2)
C2—C1—C6120.4 (3)C7—C8—Cl1112.3 (2)
C2—C1—N1120.0 (2)C7—C8—H8A109.1
C6—C1—N1119.6 (2)Cl1—C8—H8A109.1
C1—C2—C3117.6 (3)C7—C8—H8B109.1
C1—C2—C9121.6 (3)Cl1—C8—H8B109.1
C3—C2—C9120.9 (3)H8A—C8—H8B107.9
C4—C3—C2122.8 (3)C2—C9—H9A109.5
C4—C3—H3118.6C2—C9—H9B109.5
C2—C3—H3118.6H9A—C9—H9B109.5
C5—C4—C3117.8 (3)C2—C9—H9C109.5
C5—C4—C10120.9 (3)H9A—C9—H9C109.5
C3—C4—C10121.2 (3)H9B—C9—H9C109.5
C6—C5—C4121.2 (3)C4—C10—H10A109.5
C6—C5—H5119.4C4—C10—H10B109.5
C4—C5—H5119.4H10A—C10—H10B109.5
C5—C6—C1120.3 (3)C4—C10—H10C109.5
C5—C6—H6119.9H10A—C10—H10C109.5
C1—C6—H6119.9H10B—C10—H10C109.5
C7—N1—C1—C2−130.4 (3)C3—C4—C5—C60.7 (5)
C7—N1—C1—C650.8 (4)C10—C4—C5—C6−179.0 (3)
C6—C1—C2—C30.7 (4)C4—C5—C6—C1−0.8 (5)
N1—C1—C2—C3−178.1 (2)C2—C1—C6—C50.1 (4)
C6—C1—C2—C9−179.1 (3)N1—C1—C6—C5178.9 (3)
N1—C1—C2—C92.1 (4)C1—N1—C7—O12.5 (5)
C1—C2—C3—C4−0.9 (4)C1—N1—C7—C8−178.9 (3)
C9—C2—C3—C4178.9 (3)O1—C7—C8—Cl1−25.2 (4)
C2—C3—C4—C50.2 (5)N1—C7—C8—Cl1156.2 (3)
C2—C3—C4—C10179.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.83 (4)2.04 (4)2.853 (3)165 (3)

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2650).

References

  • Enraf–Nonius (1996). CAD-4-PC Version 1.2. Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o1975–o1976.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2335–o2336.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o3364.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007d). Acta Cryst. E63, o2333–o2334.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007e). Acta Cryst. E63, o4488.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007f). Acta Cryst. E63, o4611.
  • Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008). Acta Cryst. E64 Submitted.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography