PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o74.
Published online 2007 December 6. doi:  10.1107/S1600536807059843
PMCID: PMC2915031

Ethyl (E)-3-anilino-2-cyano-3-mercaptoacrylate

Abstract

In the title compound, C12H12N2O2S, there are S—H(...)N and N—H(...)O hydrogen-bond inter­actions. The N—H(...)O hydrogen bond is bifurcated, with the hydrogen being simultaneously donated to two equivalent O atoms, forming one intra- and one inter­molecular N—H(...)O bond with an R 1 2(4) motif. The motif of the S—H(...)N hydrogen bond is R 2 2(12).

Related literature

For related literature, see: Allen (2002 [triangle]); Azim et al. (1997 [triangle]); Gao et al. (2006 [triangle]); Timofeeva et al. (2004 [triangle]); Xue et al. (2004 [triangle]); Etter et al. (1990 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o74-scheme1.jpg

Experimental

Crystal data

  • C12H12N2O2S
  • M r = 248.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o74-efi1.jpg
  • a = 26.357 (5) Å
  • b = 7.0120 (14) Å
  • c = 16.234 (3) Å
  • β = 121.45 (3)°
  • V = 2559.6 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 295 (2) K
  • 0.2 × 0.15 × 0.11 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 5482 measured reflections
  • 2779 independent reflections
  • 1979 reflections with I > 2σ(I)
  • R int = 0.019
  • 3 standard reflections every 100 reflections intensity decay: 4.2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.104
  • S = 1.03
  • 2779 reflections
  • 164 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL/PC (Sheldrick, 1997b [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807059843/fb2066sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807059843/fb2066Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2005B04).

supplementary crystallographic information

Comment

Acrylics have been studied for many years because of their special chemical properties. They are widely used as elastics, adhesives, covering material and so on. Recent studies have also shown that the derivative of acrylics provide also herbicidal activity (Gao et al., 2006).

It follows from our previous quantum-mechanical study of these compounds that they have several active centres and can easily form polyligand complexes with metals (Xue et al., 2004).

In order to search for new compounds with higher bioactivity, the title compound was synthesized.

The C[equivalent]N bond length (1.145 (2) Å), C?C (1.405 (2) Å) and C?O (1.2202 (18) Å) are in agreement with those observed before (Timofeeva et al., 2004; Azim et al., 1997). The S—H hydrogen bond length corresponds well to the the value 1.197 (9) Å from 247 observations yielded by the Cambridge Crystallographic Database (Allen, 2002).

The H2A hydrogen is simultaneously donated to two equivalent O atoms, forming one intra- and one intermolecular N—H···O bond with a motif R12(4) (Etter et al., 1990). A motif of the S—H···N hydrogen bond is R22(12).

Experimental

The title compound was prepared by the reaction of ethyl 2-cyanoacetate (0.02 mol), KOH (0.03 mol) and N-phenylmethanethioamide (0.02 mol) dissolved in 1,4-dioxane (30 ml) while refluxing about two hours. Yellow single crystals of suitable for X-ray measurements were prisms and they were obtained by recrystallization from ethanol/acetone (1:1 v/v) at room temperature that took about two days. The size of the crystals was about tenths of milimetres in each direction.

Refinement

All the H atoms were discernible in a difference Fourier map. The C—H distances were constrained to 0.93, 0.97 and 0.96 Å for the aryl, methylene and the methyl H atoms, respectively, while Uiso(H) = 1.2Ueq(C) for the aryls as well as for the methylenes and 1.5Ueq(C) for the methyls. The positional parameters as well as the Uiso of the H atoms involved in the S—H···N and N—H···O hydrogen bonds were refined freely.

Figures

Fig. 1.
The molecular structure and atom-labelling scheme of the title structure with the displacement ellipsoids drawn at the 30% probability level.

Crystal data

C12H12N2O2SF000 = 1040
Mr = 248.30Dx = 1.289 Mg m3
Monoclinic, C2/cMelting point: 221.3 K
Hall symbol: -C 2ycMo Kα radiation λ = 0.71073 Å
a = 26.357 (5) ÅCell parameters from 25 reflections
b = 7.0120 (14) Åθ = 1.8–27.0º
c = 16.234 (3) ŵ = 0.24 mm1
β = 121.45 (3)ºT = 295 (2) K
V = 2559.6 (9) Å3Prism, yellow
Z = 80.2 × 0.15 × 0.11 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.019
Radiation source: fine-focus sealed tubeθmax = 27.0º
Monochromator: graphiteθmin = 1.8º
T = 295(2) Kh = −33→32
ω scank = −8→0
Absorption correction: nonel = −20→20
5482 measured reflections3 standard reflections
2779 independent reflections every 100 reflections
1979 reflections with I > 2σ(I) intensity decay: 4.2%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104  w = 1/[σ2(Fo2) + (0.0561P)2 + 0.5262P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2779 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = −0.22 e Å3
37 constraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0029 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.036112 (18)0.79399 (8)0.39148 (4)0.05947 (18)
O10.23012 (5)0.56216 (18)0.53519 (9)0.0582 (3)
O20.20130 (5)0.32520 (16)0.59661 (8)0.0494 (3)
N10.06376 (7)0.3767 (2)0.54908 (13)0.0659 (4)
N20.14258 (6)0.8090 (2)0.41610 (10)0.0462 (3)
H2A0.1777 (10)0.773 (3)0.4423 (16)0.069 (6)*
C10.25743 (12)0.0566 (4)0.6871 (2)0.0964 (8)
H1A0.2955−0.00500.71700.145*
H1B0.2274−0.02850.64140.145*
H1C0.24860.09030.73570.145*
C20.25859 (8)0.2327 (3)0.63637 (15)0.0616 (5)
H2B0.29010.31720.68130.074*
H2C0.26570.19990.58510.074*
C30.19241 (7)0.4885 (2)0.54693 (11)0.0421 (4)
C40.13246 (6)0.5611 (2)0.50890 (10)0.0412 (3)
C50.09459 (7)0.4589 (2)0.53170 (12)0.0461 (4)
C60.10985 (6)0.7154 (2)0.44426 (11)0.0398 (3)
C70.11984 (6)0.9531 (2)0.34181 (11)0.0420 (4)
C80.11445 (7)0.9104 (3)0.25486 (12)0.0528 (4)
H8A0.12590.79140.24490.063*
C90.09161 (9)1.0473 (3)0.18194 (14)0.0660 (5)
H9A0.08811.02010.12310.079*
C100.07420 (9)1.2232 (3)0.19681 (16)0.0705 (6)
H10A0.05841.31330.14750.085*
C110.08016 (9)1.2657 (3)0.28392 (17)0.0679 (5)
H11A0.06851.38460.29350.081*
C120.10358 (8)1.1319 (3)0.35789 (13)0.0550 (4)
H12A0.10831.16140.41740.066*
H10.0213 (9)0.687 (3)0.4325 (16)0.085 (7)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0395 (2)0.0700 (3)0.0704 (3)0.0091 (2)0.0297 (2)0.0194 (2)
O10.0449 (6)0.0577 (7)0.0779 (8)0.0069 (6)0.0361 (6)0.0216 (6)
O20.0457 (6)0.0456 (6)0.0564 (7)0.0061 (5)0.0262 (5)0.0135 (5)
N10.0641 (9)0.0628 (10)0.0857 (11)0.0043 (8)0.0495 (9)0.0187 (9)
N20.0372 (7)0.0493 (8)0.0532 (8)0.0046 (6)0.0245 (6)0.0133 (6)
C10.0896 (16)0.0770 (16)0.118 (2)0.0293 (14)0.0511 (15)0.0501 (15)
C20.0547 (10)0.0575 (11)0.0718 (12)0.0167 (9)0.0325 (9)0.0176 (9)
C30.0435 (8)0.0415 (8)0.0420 (8)0.0002 (7)0.0227 (7)0.0022 (7)
C40.0409 (8)0.0415 (8)0.0449 (8)−0.0004 (7)0.0249 (7)0.0019 (7)
C50.0466 (8)0.0453 (9)0.0522 (9)0.0046 (7)0.0298 (7)0.0065 (7)
C60.0366 (7)0.0426 (8)0.0413 (8)−0.0005 (6)0.0211 (6)−0.0012 (7)
C70.0346 (7)0.0426 (9)0.0468 (8)−0.0018 (6)0.0198 (7)0.0051 (7)
C80.0529 (9)0.0502 (10)0.0566 (10)−0.0034 (8)0.0294 (8)−0.0005 (8)
C90.0662 (11)0.0787 (14)0.0475 (10)−0.0107 (11)0.0257 (9)0.0072 (10)
C100.0604 (11)0.0656 (13)0.0694 (13)0.0022 (10)0.0227 (10)0.0297 (11)
C110.0689 (12)0.0444 (10)0.0863 (15)0.0096 (9)0.0376 (11)0.0140 (10)
C120.0603 (10)0.0471 (10)0.0601 (11)0.0011 (8)0.0332 (9)0.0001 (8)

Geometric parameters (Å, °)

S1—C61.7544 (16)C3—C41.456 (2)
S1—H11.20 (2)C4—C61.405 (2)
O1—C31.2202 (18)C4—C51.426 (2)
O2—C31.3485 (18)C7—C81.376 (2)
O2—C21.449 (2)C7—C121.393 (2)
N1—C51.145 (2)C8—C91.394 (3)
N2—C61.3400 (19)C8—H8A0.9300
N2—C71.442 (2)C9—C101.381 (3)
N2—H2A0.83 (2)C9—H9A0.9300
C1—C21.493 (3)C10—C111.372 (3)
C1—H1A0.9600C10—H10A0.9300
C1—H1B0.9600C11—C121.389 (3)
C1—H1C0.9600C11—H11A0.9300
C2—H2B0.9700C12—H12A0.9300
C2—H2C0.9700
C6—S1—H197.5 (10)N1—C5—C4179.3 (2)
C3—O2—C2117.53 (12)N2—C6—C4122.31 (13)
C6—N2—C7124.61 (13)N2—C6—S1115.19 (12)
C6—N2—H2A114.7 (14)C4—C6—S1122.47 (11)
C7—N2—H2A120.6 (15)C8—C7—C12120.72 (15)
C2—C1—H1A109.5C8—C7—N2118.75 (15)
C2—C1—H1B109.5C12—C7—N2120.53 (15)
H1A—C1—H1B109.5C7—C8—C9119.29 (18)
C2—C1—H1C109.5C7—C8—H8A120.4
H1A—C1—H1C109.5C9—C8—H8A120.4
H1B—C1—H1C109.5C10—C9—C8120.18 (19)
O2—C2—C1107.41 (16)C10—C9—H9A119.9
O2—C2—H2B110.2C8—C9—H9A119.9
C1—C2—H2B110.2C11—C10—C9120.30 (18)
O2—C2—H2C110.2C11—C10—H10A119.9
C1—C2—H2C110.2C9—C10—H10A119.9
H2B—C2—H2C108.5C10—C11—C12120.33 (19)
O1—C3—O2123.45 (14)C10—C11—H11A119.8
O1—C3—C4125.29 (14)C12—C11—H11A119.8
O2—C3—C4111.25 (13)C11—C12—C7119.16 (18)
C6—C4—C5119.96 (13)C11—C12—H12A120.4
C6—C4—C3122.00 (13)C7—C12—H12A120.4
C5—C4—C3117.76 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O10.83 (2)2.05 (2)2.7210 (19)137.9 (19)
N2—H2A···O1i0.83 (2)2.54 (2)3.1513 (19)131.3 (18)
S1—H1···N1ii1.20 (2)2.45 (2)3.4560 (17)140.1 (15)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2066).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Azim, A., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1436–1438.
  • Enraf–Nonius (1989). CAD-4 Software Version 5.0. Enraf–Nonius, Delft, The Netherlands.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gao, Y., Zou, X. M., Yu, L. M., Xu, H., Liu, B., Zhu, Y. Q., Hu, F. Z. & Yang, H. Z. (2006). J. Chin. Chem.24, 521–523.
  • Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  • Sheldrick, G. M. (1997a). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Sheldrick, G. M. (1997b). SHELXTL/PC Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Timofeeva, T. V., Kinnibrugh, T., Borbulevych, O. Y., Averkiev, B. B., Nesterov, V. N., Sloan, A. & Antipin, M. Y. (2004). Cryst. Growth Des.4, 1265–1276.
  • Xue, S. J., Duan, L. P. & Xe, S. Y. (2004). Chin. J. Struct. Chem.23, 441–444.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography