PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o71.
Published online 2007 December 6. doi:  10.1107/S160053680706179X
PMCID: PMC2915028

5,7-Dihydroxy-6,4′-dimeth­oxyflavone

Abstract

In the title compound, C17H14O6, the benzopyran ring system is essentially planar and forms a dihedral angle of 6.84 (4)° with the other benzene ring. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by O—H(...)O hydrogen bonds. The crystal packing is controlled by C—H(...)π and π–π stacking inter­actions involving the benzopyran and benzene rings, with centroid–centroid distances between 3.645 (2) and 3.986 (2) Å.

Related literature

For related literature, see: Guo et al. (2006 [triangle]); Wang & Cheng (2007 [triangle]); Wu et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o71-scheme1.jpg

Experimental

Crystal data

  • C17H14O6
  • M r = 314.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o71-efi1.jpg
  • a = 6.9115 (11) Å
  • b = 7.2583 (12) Å
  • c = 14.649 (2) Å
  • α = 82.739 (6)°
  • β = 88.424 (6)°
  • γ = 76.907 (6)°
  • V = 710.0 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 293 (2) K
  • 0.18 × 0.12 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.980, T max = 0.990
  • 7597 measured reflections
  • 2469 independent reflections
  • 2095 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.110
  • S = 1.08
  • 2469 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680706179X/rz2178sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706179X/rz2178Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge the support of the Natural Science Foundation of Guizhou, China [J(2006)2008].

supplementary crystallographic information

Comment

Flavone compounds exhibit different physiological functions and activities (Wu et al., 2007), such as antibacterial and antioxidative activities, and are useful in diminshing inflammation, relieving cough and dispelling phlegm. In these compounds, different structures having different conformations exhibit a wide range macroscopic physiological activities (Guo et al., 2006; Wang et al., 2007). The title compound, 6,4'-dimethoxy-5,7-dihydroxyflavone, which is a natural product extracted from Teucrium pilosum found in the Guizhou Province of China, effects on phenol red excretion volume of mouse trachea and on the ammonia-induced cough in mice.

In the title compound (Fig. 1), the benzopyran ring is essentially planar (maximum displacement 0.0258 (14) Å for atom C10) and forms a dihedral angle of 6.84 (4)° with the benzene ring C2—C7. The molecular conformation is stabilized by two O—H···O intramolecular hydrogen bonds (Table 1). Moreover, centrosymmetrically related molecules are linked into dimers by O—H···O hydrogen bonds (Table 1). In the crystal structure, π···π stacking interactions occur between adjacent rings, with centroid-centroid separations of 3.645 (2), 3.656 (2) and 3.986 (2) Å for Cg1···Cg2i, Cg1···Cg2ii and Cg2···Cg3i respectively (Cg1, Cg2 and Cg3 are the centroids of the O6/C8—C12, C2—C7 and C11—C16 rings; symmetry codes: (i) -x, 1 - y, 1 - z; (ii) -x, 2 - y, 1 - z). The structure is further stabilized by a C—H···π interaction (C1—H1B···Cg(3)ii = 150.3°; H1B···Cg(3)ii = 2.93 Å; C1···Cg(3)ii = 3.799 (2) Å).

Experimental

30 kg of dried whole plant Teucrium pilosum was powdered and extracted with ethanol (120 L) three times at room temperature and the residue was separated after removing the solvent under vacuum. The residue was suspended in water and extracted with ethyl acetate and n-butanol respectively. The ethyl acetate fraction (4.5 kg) was subjected repeatedly to column chromatography on silica gel using petroleum with a gradient of ethyl acetate (0–100% EtOAc) to yield the title compound (916.3 mg). Single crystals suitable for X-ray diffraction analysis were obtained from an ether-CHCl3 mixture (1:10 v/v) by slow evaporation of the solvent at room temperature.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93–0.96 Å, O—H = 0.82 Å, and refined using the riding model approximation, with Uiso(H) = 1.2 Ueq(C, O) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C17H14O6Z = 2
Mr = 314.28F000 = 328
Triclinic, P1Dx = 1.470 Mg m3
Hall symbol: -P 1Melting point: 224-226° C K
a = 6.9115 (11) ÅMo Kα radiation λ = 0.71073 Å
b = 7.2583 (12) ÅCell parameters from 7597 reflections
c = 14.649 (2) Åθ = 1.4–25.0º
α = 82.739 (6)ºµ = 0.11 mm1
β = 88.424 (6)ºT = 293 (2) K
γ = 76.907 (6)ºPrism, colourless
V = 710.0 (2) Å30.18 × 0.12 × 0.09 mm

Data collection

Bruker APEXII CCD area-detector diffractometer2469 independent reflections
Radiation source: fine-focus sealed tube2095 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.020
T = 293(2) Kθmax = 25.0º
[var phi] and ω scanθmin = 1.4º
Absorption correction: multi-scanSADABS (Bruker, 2005)h = −8→8
Tmin = 0.980, Tmax = 0.990k = −8→8
7597 measured reflectionsl = −17→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038  w = 1/[σ2(Fo2) + (0.0576P)2 + 0.1294P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.110(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.20 e Å3
2469 reflectionsΔρmin = −0.19 e Å3
209 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (5)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.3004 (3)0.9240 (3)0.86019 (11)0.0675 (5)
H1A−0.39830.97150.90430.101*
H1B−0.19840.99510.85630.101*
H1C−0.24280.79180.87910.101*
C2−0.2756 (2)0.8843 (2)0.70068 (10)0.0444 (4)
C3−0.0702 (2)0.8314 (2)0.70196 (10)0.0476 (4)
H3−0.00050.83080.75550.057*
C40.0309 (2)0.7793 (2)0.62275 (10)0.0441 (4)
H40.16890.74430.62370.053*
C5−0.0691 (2)0.77829 (18)0.54212 (9)0.0361 (3)
C6−0.2764 (2)0.8273 (2)0.54371 (10)0.0443 (4)
H6−0.34730.82440.49110.053*
C7−0.3773 (2)0.8797 (2)0.62189 (11)0.0494 (4)
H7−0.51540.91230.62150.059*
C80.0387 (2)0.72640 (18)0.45786 (9)0.0353 (3)
C90.2359 (2)0.6569 (2)0.44969 (10)0.0416 (4)
H90.31630.63920.50140.050*
C100.3248 (2)0.6095 (2)0.36394 (10)0.0398 (3)
C110.18831 (19)0.63688 (18)0.28746 (9)0.0351 (3)
C12−0.0140 (2)0.71097 (19)0.30008 (9)0.0349 (3)
C13−0.1511 (2)0.7425 (2)0.22975 (10)0.0412 (4)
H13−0.28490.79410.23950.049*
C14−0.0826 (2)0.6948 (2)0.14458 (10)0.0400 (4)
C150.1185 (2)0.6180 (2)0.12867 (9)0.0392 (4)
C160.2539 (2)0.5884 (2)0.19985 (10)0.0381 (3)
C170.2732 (3)0.7014 (3)−0.01218 (11)0.0595 (5)
H17A0.30960.6582−0.07090.089*
H17B0.39040.70900.01950.089*
H17C0.18490.8250−0.02110.089*
O1−0.39076 (18)0.94398 (18)0.77344 (8)0.0630 (4)
O20.50778 (15)0.54639 (17)0.35414 (7)0.0547 (3)
O30.44741 (15)0.51494 (17)0.18454 (7)0.0531 (3)
H3A0.51050.50510.23220.080*
O40.17552 (15)0.56933 (15)0.04163 (7)0.0475 (3)
O5−0.21639 (15)0.72526 (17)0.07437 (7)0.0550 (3)
H5−0.15870.69190.02750.083*
O6−0.08666 (13)0.75600 (14)0.38456 (6)0.0384 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.1075 (16)0.0602 (11)0.0344 (9)−0.0146 (10)0.0078 (9)−0.0132 (8)
C20.0545 (9)0.0402 (8)0.0368 (8)−0.0072 (7)0.0084 (7)−0.0060 (6)
C30.0604 (10)0.0488 (9)0.0346 (8)−0.0115 (7)−0.0065 (7)−0.0093 (6)
C40.0451 (8)0.0491 (9)0.0393 (8)−0.0105 (7)−0.0012 (6)−0.0104 (6)
C50.0439 (8)0.0322 (7)0.0325 (7)−0.0094 (6)0.0009 (6)−0.0040 (5)
C60.0447 (8)0.0520 (9)0.0354 (8)−0.0092 (7)−0.0015 (6)−0.0057 (6)
C70.0448 (8)0.0585 (10)0.0414 (9)−0.0043 (7)0.0053 (7)−0.0068 (7)
C80.0414 (8)0.0336 (7)0.0322 (7)−0.0109 (6)−0.0015 (6)−0.0039 (5)
C90.0410 (8)0.0495 (9)0.0332 (8)−0.0080 (6)−0.0044 (6)−0.0045 (6)
C100.0360 (8)0.0430 (8)0.0396 (8)−0.0085 (6)0.0014 (6)−0.0036 (6)
C110.0374 (8)0.0352 (7)0.0335 (8)−0.0099 (6)0.0025 (6)−0.0054 (6)
C120.0388 (7)0.0364 (7)0.0309 (7)−0.0098 (6)0.0041 (6)−0.0082 (5)
C130.0349 (7)0.0514 (9)0.0379 (8)−0.0072 (6)0.0000 (6)−0.0122 (6)
C140.0437 (8)0.0465 (8)0.0324 (8)−0.0127 (6)−0.0017 (6)−0.0097 (6)
C150.0457 (8)0.0430 (8)0.0321 (8)−0.0131 (6)0.0064 (6)−0.0119 (6)
C160.0374 (7)0.0394 (8)0.0385 (8)−0.0095 (6)0.0064 (6)−0.0086 (6)
C170.0735 (11)0.0701 (11)0.0389 (9)−0.0230 (9)0.0171 (8)−0.0130 (8)
O10.0702 (8)0.0756 (8)0.0383 (6)−0.0025 (6)0.0113 (5)−0.0158 (5)
O20.0339 (6)0.0805 (8)0.0451 (7)−0.0032 (5)0.0010 (5)−0.0082 (5)
O30.0380 (6)0.0738 (8)0.0454 (7)−0.0040 (5)0.0078 (5)−0.0170 (5)
O40.0556 (7)0.0591 (7)0.0341 (6)−0.0197 (5)0.0098 (5)−0.0196 (5)
O50.0479 (6)0.0816 (8)0.0360 (6)−0.0076 (5)−0.0052 (5)−0.0203 (5)
O60.0362 (5)0.0496 (6)0.0294 (5)−0.0064 (4)0.0009 (4)−0.0107 (4)

Geometric parameters (Å, °)

C1—O11.408 (2)C10—O21.2545 (17)
C1—H1A0.9600C10—C111.4498 (19)
C1—H1B0.9600C11—C121.3959 (19)
C1—H1C0.9600C11—C161.409 (2)
C2—O11.3678 (18)C12—O61.3727 (16)
C2—C71.376 (2)C12—C131.3812 (19)
C2—C31.384 (2)C13—C141.379 (2)
C3—C41.387 (2)C13—H130.9300
C3—H30.9300C14—O51.3651 (17)
C4—C51.387 (2)C14—C151.400 (2)
C4—H40.9300C15—C161.384 (2)
C5—C61.396 (2)C15—O41.3890 (16)
C5—C81.470 (2)C16—O31.3471 (17)
C6—C71.374 (2)C17—O41.4383 (19)
C6—H60.9300C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.349 (2)C17—H17C0.9600
C8—O61.3632 (16)O3—H3A0.8200
C9—C101.430 (2)O5—H50.8200
C9—H90.9300
O1—C1—H1A109.5O2—C10—C11121.21 (13)
O1—C1—H1B109.5C9—C10—C11115.46 (12)
H1A—C1—H1B109.5C12—C11—C16118.45 (12)
O1—C1—H1C109.5C12—C11—C10119.87 (12)
H1A—C1—H1C109.5C16—C11—C10121.68 (13)
H1B—C1—H1C109.5O6—C12—C13116.48 (12)
O1—C2—C7115.54 (14)O6—C12—C11120.89 (12)
O1—C2—C3124.67 (14)C13—C12—C11122.63 (13)
C7—C2—C3119.78 (14)C14—C13—C12117.67 (13)
C2—C3—C4119.42 (14)C14—C13—H13121.2
C2—C3—H3120.3C12—C13—H13121.2
C4—C3—H3120.3O5—C14—C13118.33 (13)
C5—C4—C3121.51 (14)O5—C14—C15119.79 (13)
C5—C4—H4119.2C13—C14—C15121.87 (13)
C3—C4—H4119.2C16—C15—O4121.77 (13)
C4—C5—C6117.71 (13)C16—C15—C14119.65 (13)
C4—C5—C8121.32 (13)O4—C15—C14118.56 (12)
C6—C5—C8120.97 (12)O3—C16—C15119.67 (13)
C7—C6—C5121.01 (14)O3—C16—C11120.61 (13)
C7—C6—H6119.5C15—C16—C11119.71 (13)
C5—C6—H6119.5O4—C17—H17A109.5
C6—C7—C2120.53 (15)O4—C17—H17B109.5
C6—C7—H7119.7H17A—C17—H17B109.5
C2—C7—H7119.7O4—C17—H17C109.5
C9—C8—O6121.73 (13)H17A—C17—H17C109.5
C9—C8—C5126.79 (13)H17B—C17—H17C109.5
O6—C8—C5111.48 (11)C2—O1—C1118.62 (14)
C8—C9—C10121.96 (13)C16—O3—H3A109.5
C8—C9—H9119.0C15—O4—C17114.00 (11)
C10—C9—H9119.0C14—O5—H5109.5
O2—C10—C9123.33 (13)C8—O6—C12120.07 (11)
O1—C2—C3—C4−177.85 (14)C10—C11—C12—C13179.21 (13)
C7—C2—C3—C41.7 (2)O6—C12—C13—C14−178.69 (12)
C2—C3—C4—C5−0.2 (2)C11—C12—C13—C141.1 (2)
C3—C4—C5—C6−1.5 (2)C12—C13—C14—O5−179.95 (12)
C3—C4—C5—C8178.85 (13)C12—C13—C14—C15−0.4 (2)
C4—C5—C6—C71.7 (2)O5—C14—C15—C16179.62 (13)
C8—C5—C6—C7−178.62 (13)C13—C14—C15—C160.1 (2)
C5—C6—C7—C2−0.2 (2)O5—C14—C15—O4−1.9 (2)
O1—C2—C7—C6178.11 (14)C13—C14—C15—O4178.50 (13)
C3—C2—C7—C6−1.5 (2)O4—C15—C16—O31.8 (2)
C4—C5—C8—C97.4 (2)C14—C15—C16—O3−179.86 (13)
C6—C5—C8—C9−172.29 (14)O4—C15—C16—C11−178.83 (12)
C4—C5—C8—O6−172.95 (12)C14—C15—C16—C11−0.4 (2)
C6—C5—C8—O67.41 (19)C12—C11—C16—O3−179.45 (12)
O6—C8—C9—C10−0.2 (2)C10—C11—C16—O3−0.2 (2)
C5—C8—C9—C10179.42 (13)C12—C11—C16—C151.1 (2)
C8—C9—C10—O2179.30 (14)C10—C11—C16—C15−179.60 (12)
C8—C9—C10—C11−1.5 (2)C7—C2—O1—C1170.14 (15)
O2—C10—C11—C12−178.72 (13)C3—C2—O1—C1−10.3 (2)
C9—C10—C11—C122.0 (2)C16—C15—O4—C17−77.04 (18)
O2—C10—C11—C162.0 (2)C14—C15—O4—C17104.56 (16)
C9—C10—C11—C16−177.22 (12)C9—C8—O6—C121.4 (2)
C16—C11—C12—O6178.30 (12)C5—C8—O6—C12−178.27 (11)
C10—C11—C12—O6−1.0 (2)C13—C12—O6—C8179.03 (12)
C16—C11—C12—C13−1.5 (2)C11—C12—O6—C8−0.80 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3A···O20.821.852.5774 (15)148
O5—H5···O40.822.282.7431 (15)116
O5—H5···O4i0.822.292.8562 (15)127
C1—H1B···Cg3ii0.962.933.799 (2)150

Symmetry codes: (i) −x, −y+1, −z; (ii) −x, −y+2, −z+3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2178).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Guo, Q. Q., Zhou, L. & Lin, S. Y. (2006). J. Chin. Med. Mater.29, 1117–1119.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Wang, W. D. & Cheng, F. S. (2007). China. Food Addit.2, 59–62.
  • Wu, X., Liu, J., Yu, Z. B., Ye, Y. H. & Zhou, Y. W. (2007). Chin. J. Chin. Mater. Med.9, 821–823.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography