PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o69–o70.
Published online 2007 December 6. doi:  10.1107/S1600536807062381
PMCID: PMC2915027

Bis(tetra­methyl­amonium) bis­(2,4,5-carboxy­benzoate)–benzene-1,2,4,5-tetra­carboxylic acid (1/1)

Abstract

The asymmetric unit of the title compound, 2C4H12N+·2C10H5O8 ·C10H6O8, consists of a tetra­methyl­amonium cation, an anion derived from the singly deprotonated pyromellitic acid anion, 2,4,5-carboxy­benzoate (H3bta), and one-half of a benzene-1,2,4,5-tetra­carboxylic acid (H4bta) mol­ecule, which has the centroid of the aromatic ring positioned at a crystallographic centre of inversion. The H4bta and H3bta residues are involved in an extensive inter­molecular O—H(...)O hydrogen-bonding network, which leads to a three-dimensional supra­molecular structure containing one-dimensional channels running parallel to the [001] crystallographic direction. These channels house the tetra­methyl­amonium cations.

Related literature

For general background on supra­molecular assemblies of organic mol­ecules mediated by hydrogen bonds, see: Dale et al. (2004 [triangle]); Fabelo et al. (2005 [triangle]); Ruiz-Pérez et al. (2004 [triangle]); Steed & Atwood (2000 [triangle]). For literature relevant to this communication and published by our group, see: Cunha-Silva et al. (2007 [triangle]); Paz & Klinowski (2003 [triangle]); Paz et al. (2002 [triangle]); Shi et al. (2007 [triangle]). For the Cambridge Structural Database, see: Allen (2002 [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-64-00o69-scheme1.jpg

Experimental

Crystal data

  • 2C4H12N+·2C10H5O8 ·C10H6O8
  • M r = 908.72
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o69-efi3.jpg
  • a = 9.4282 (4) Å
  • b = 18.7286 (8) Å
  • c = 11.3175 (5) Å
  • β = 107.053 (2)°
  • V = 1910.55 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.13 mm−1
  • T = 150 (2) K
  • 0.14 × 0.12 × 0.12 mm

Data collection

  • Bruker Kappa APEXII diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998 [triangle]) T min = 0.982, T max = 0.984
  • 19608 measured reflections
  • 3736 independent reflections
  • 2523 reflections with I > 2σ(I)
  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.099
  • S = 1.00
  • 3736 reflections
  • 308 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Bruker 2001 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062381/sj2444sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062381/sj2444Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support (POCI-PPCDT/QUI/58377/2004, supported by FEDER) and for the postdoctoral and PhD research grants Nos. SFRH/BPD/14410/2003 (to LCS) and SFRH/BD/17968/2004 (to PIG.).

supplementary crystallographic information

Comment

Crystal Engineers aim to design functional materials with overall properties which are uniquely directed by the physical and chemical properties of the employed building blocks. In this context, an important strategy used to control the self-assembly processes is based on the use of reliable intermolecular interactions, such as strong and highly directional hydrogen bonds (Steed & Atwood, 2000). Pyromellitic acid (benzene-1,2,4,5-tetracarboxylic acid, H4bta) has been widely used in the isolation of novel organic crystals, as revealed by a systematic search of the Cambridge Structural Database (Version 5.28, 3 updates - August 2007; Allen, 2002). Indeed, the four symmetrically located carboxylic acid groups confer on this organic molecule predictable and interesting supramolecular properties (Ruiz-Pérez et al., 2004; Fabelo et al., 2005; Dale et al., 2004). As part of our on-going research in the field of Crystal Engineering (Cunha-Silva et al., 2007; Shi et al., 2007), in particular in the use of organic ligands based on carboxylic acid groups (Paz & Klinowski, 2003; Paz et al., 2002), we have recently isolated the title compound, [NMe4]+2 (H3bta)-2.(H4bta), as a secondary product.

The asymmetric unit of I comprises one [NMe4]+ cation, one H3bta- anion and half of a H4bta molecule which has the centroid of the aromatic ring (Cg) positioned at a crystallographic centre of inversion (Figure 1). H3bta- anions (moiety type A) and H4bta molecules (moiety type B) close pack along the [001] direction of the unit cell in a AABAAB alternate fashion, mediated by a series of weak π···π offset stacking interactions having Cg···Cg distances of 3.762 (2) Å (for A···A), 3.927 (2) Å (for A···B) and 3.910 (2) Å (for B···A). However, the crystal packing of I is essentially mediated by the extensive hydrogen bonding network composed of strong and highly directional O—H···O hydrogen bonds involving the two crystallographic independent residues of pyromellitic acid (Table 1). Indeed, while each H4bta molecule interacts with six neighbouring H3bta- anions, each H3bta- is instead connected to three H4bta plus another two symmetry-related H3bta-. The resulting complicated hydrogen bond connectivity leads to the formation of supramolecular R55(31) rings (Bernstein et al., 1995), which are further interconnected into helices running parallel to the [001] direction of the unit cell (Figure 2 and Table 1). This supramolecular arrangement distributes the H3bta- and H4bta chemical moieties in such a way that the anionic framework contains a one-dimensional channels (also running parallel to the [001] direction) which houses the charge-balancing [NMe4]+ cations (Figure 3). Besides the electrostatic interactions, these cationic moieties are further stabilized inside the channels by a series of weak C—H···O interactions, with C···O distances ranging from 3.161 (3) to 3.663 (3) Å (not shown).

Experimental

2,6-Dihydroxybenzoic acid (0.308 g, 2 mmol) and benzene-1,2,4,5-tetracarboxylic acid (0.510 g, 2 mmol) were mixed in distilled water (ca 20 ml). Tetramethylamonium hydroxide (solution of 25%; 2 mmol) and manganese chloride tetrahydrate (0.101 g, 0.5 mmol) were added, and the resulting mixture was refluxed for 5 h. The solvent from the final pale yellow solution was allowed to slowly evaporate, at ambient temperature, over a period of 10 months. Large single-crystals of the title compound, suitable for X-ray diffraction, were directly harvested from the crystallization vial.

Refinement

H atoms associated with the carboxylic acid groups were markedly visible from difference Fourier maps and were included in the final structural model with the O—H distances restrained to 0.95 (1) Å, and assuming an isotropic displacement behaviour with Uiso fixed at 1.5 times Ueq of the parent O atom. All remaining H atoms were located at idealized positions and refined with Uiso=1.2×Ueq(C).

Figures

Fig. 1.
Chemical moieties composing the asymmetric unit of I (black-filled bonds), showing the labelling scheme for all atoms. Displacement ellipsoids are drawn at the 50% probability level and H-atoms are shown as small spheres with arbitrary radii. Symmetry ...
Fig. 2.
Schematic representation of the O—H···O connections between adjacent H3bta- and H4bta residues leading to (a)R55(31) rings which are further interconnected along the [001] direction of the unit cell into (b) helical chains ...
Fig. 3.
Crystal packing of the title compound viewed in perspective along the (a) [001] and (b) [100] directions of the unit cell. O—H···O hydrogen bonds are represented as dashed green lines and the [NMe4]+ cations in space-filling ...

Crystal data

2C4H12N+·2C10H5O8·C10H6O8F(000) = 948
Mr = 908.72Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2577 reflections
a = 9.4282 (4) Åθ = 2.9–23.2°
b = 18.7286 (8) ŵ = 0.13 mm1
c = 11.3175 (5) ÅT = 150 K
β = 107.053 (2)°Block, colourless
V = 1910.55 (14) Å30.14 × 0.12 × 0.12 mm
Z = 2

Data collection

Bruker X8 KappaCCD APEXII diffractometer3736 independent reflections
Radiation source: fine-focus sealed tube2523 reflections with I > 2σ(I)
graphiteRint = 0.061
ω/[var phi] scansθmax = 26.0°, θmin = 3.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)h = −11→9
Tmin = 0.982, Tmax = 0.984k = −22→23
19608 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0485P)2] where P = (Fo2 + 2Fc2)/3
3736 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.27 e Å3
5 restraintsΔρmin = −0.31 e Å3

Special details

Experimental. See dedicated section in the main paper
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.23459 (15)−0.18900 (7)0.41351 (13)0.0243 (4)
O20.03177 (16)−0.19106 (7)0.25030 (14)0.0306 (4)
H20.059 (2)−0.2395 (6)0.241 (2)0.046*
O30.45044 (15)−0.07193 (7)0.43306 (13)0.0222 (4)
O40.38326 (15)−0.05971 (7)0.60719 (13)0.0228 (3)
H40.4840 (12)−0.0655 (11)0.6516 (18)0.034*
O50.07842 (15)0.17226 (7)0.47794 (13)0.0233 (4)
O6−0.07866 (16)0.17604 (7)0.28878 (13)0.0261 (4)
O7−0.27358 (15)0.09642 (7)0.17213 (13)0.0201 (3)
H7−0.1913 (17)0.1273 (9)0.2101 (18)0.030*
O8−0.32512 (15)−0.01671 (7)0.19026 (13)0.0226 (3)
O90.22586 (15)0.16081 (7)0.01694 (14)0.0246 (4)
O10−0.00003 (15)0.19454 (7)0.02169 (13)0.0226 (4)
H100.038 (2)0.2382 (7)0.004 (2)0.034*
O11−0.34327 (15)−0.06460 (7)−0.22544 (13)0.0223 (3)
O12−0.39830 (15)0.00769 (8)−0.08721 (14)0.0270 (4)
H12−0.5011 (12)0.0024 (12)−0.1315 (18)0.041*
C10.0979 (2)−0.08162 (9)0.34901 (17)0.0127 (4)
C20.2037 (2)−0.03525 (10)0.42177 (17)0.0129 (4)
C30.1658 (2)0.03604 (10)0.43179 (17)0.0136 (4)
H30.23610.06690.48510.016*
C40.0279 (2)0.06330 (9)0.36590 (17)0.0134 (4)
C5−0.0786 (2)0.01648 (10)0.29062 (17)0.0137 (4)
C6−0.0402 (2)−0.05506 (10)0.28629 (17)0.0137 (4)
H6−0.1123−0.08700.23790.016*
C70.1305 (2)−0.15936 (10)0.34274 (18)0.0158 (5)
C80.3601 (2)−0.05876 (10)0.48645 (19)0.0160 (5)
C90.0077 (2)0.14282 (10)0.38080 (19)0.0161 (4)
C10−0.2354 (2)0.03281 (10)0.21461 (18)0.0157 (4)
C110.1018 (2)0.14644 (10)0.01977 (17)0.0142 (4)
C120.0487 (2)0.07093 (10)0.01737 (17)0.0123 (4)
C13−0.0993 (2)0.05489 (10)−0.04131 (17)0.0132 (4)
H13−0.16800.0928−0.06910.016*
C14−0.1490 (2)−0.01526 (10)−0.06025 (17)0.0123 (4)
C15−0.3083 (2)−0.02798 (10)−0.13252 (18)0.0141 (4)
N10.46132 (18)0.23095 (8)0.82066 (15)0.0209 (4)
C160.5398 (3)0.17774 (12)0.9150 (2)0.0412 (7)
H16A0.61080.20240.98370.062*
H16B0.59290.14380.87750.062*
H16C0.46750.15200.94590.062*
C170.5693 (3)0.27012 (13)0.7714 (2)0.0380 (6)
H17A0.51700.30700.71350.057*
H17B0.61690.23660.72840.057*
H17C0.64490.29250.83980.057*
C180.3829 (3)0.28289 (12)0.8791 (2)0.0363 (6)
H18A0.33210.31850.81780.054*
H18B0.45510.30680.94800.054*
H18C0.31010.25760.91000.054*
C190.3527 (3)0.19388 (13)0.7173 (2)0.0407 (7)
H19A0.27680.17100.74800.061*
H19B0.40390.15760.68270.061*
H19C0.30540.22860.65310.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0200 (8)0.0142 (8)0.0316 (9)0.0039 (6)−0.0034 (7)−0.0003 (7)
O20.0315 (9)0.0129 (8)0.0342 (9)0.0053 (7)−0.0112 (7)−0.0103 (7)
O30.0153 (8)0.0235 (8)0.0284 (9)0.0023 (6)0.0075 (7)−0.0020 (7)
O40.0156 (8)0.0316 (9)0.0170 (8)0.0017 (7)−0.0018 (6)0.0010 (7)
O50.0261 (9)0.0126 (7)0.0266 (8)−0.0005 (6)0.0007 (7)−0.0038 (6)
O60.0302 (9)0.0113 (7)0.0286 (9)−0.0004 (7)−0.0044 (7)0.0043 (6)
O70.0165 (8)0.0153 (8)0.0230 (8)0.0021 (6)−0.0026 (6)0.0015 (6)
O80.0126 (8)0.0185 (8)0.0333 (9)−0.0013 (7)0.0016 (7)−0.0031 (7)
O90.0148 (8)0.0176 (8)0.0406 (9)−0.0036 (6)0.0067 (7)0.0040 (7)
O100.0218 (8)0.0110 (8)0.0369 (9)−0.0001 (6)0.0116 (7)0.0006 (7)
O110.0166 (8)0.0250 (8)0.0204 (8)−0.0002 (6)−0.0022 (6)−0.0061 (7)
O120.0100 (7)0.0323 (9)0.0360 (9)0.0011 (7)0.0024 (7)−0.0143 (7)
C10.0145 (11)0.0107 (10)0.0143 (10)0.0014 (8)0.0065 (9)0.0008 (8)
C20.0133 (10)0.0132 (10)0.0123 (10)0.0014 (8)0.0042 (9)0.0031 (8)
C30.0135 (11)0.0121 (10)0.0145 (10)−0.0021 (8)0.0030 (9)−0.0011 (8)
C40.0169 (11)0.0121 (10)0.0126 (10)−0.0012 (9)0.0064 (9)0.0004 (8)
C50.0130 (10)0.0132 (10)0.0161 (10)−0.0005 (8)0.0061 (9)0.0005 (8)
C60.0150 (11)0.0124 (10)0.0139 (10)−0.0030 (8)0.0044 (9)−0.0014 (8)
C70.0160 (11)0.0141 (11)0.0165 (11)−0.0006 (9)0.0036 (9)−0.0016 (9)
C80.0180 (11)0.0073 (10)0.0215 (12)−0.0026 (9)0.0038 (9)−0.0008 (9)
C90.0140 (11)0.0128 (10)0.0227 (11)−0.0015 (9)0.0071 (10)0.0013 (9)
C100.0146 (11)0.0160 (11)0.0161 (11)0.0020 (9)0.0038 (9)−0.0022 (9)
C110.0134 (11)0.0142 (10)0.0122 (10)0.0012 (9)−0.0008 (8)0.0023 (8)
C120.0127 (10)0.0126 (10)0.0129 (10)−0.0013 (8)0.0056 (8)−0.0016 (8)
C130.0126 (10)0.0115 (10)0.0153 (10)0.0037 (8)0.0037 (8)0.0030 (8)
C140.0102 (10)0.0137 (10)0.0134 (10)−0.0010 (8)0.0041 (8)−0.0001 (8)
C150.0121 (10)0.0090 (10)0.0199 (12)0.0011 (8)0.0028 (9)0.0045 (9)
N10.0201 (10)0.0169 (9)0.0256 (10)−0.0021 (8)0.0064 (8)0.0002 (8)
C160.0388 (15)0.0307 (14)0.0453 (16)0.0095 (12)−0.0015 (13)0.0120 (12)
C170.0345 (14)0.0419 (15)0.0453 (16)−0.0130 (12)0.0239 (13)−0.0084 (12)
C180.0479 (16)0.0242 (13)0.0494 (17)0.0059 (11)0.0342 (14)0.0049 (11)
C190.0358 (15)0.0397 (15)0.0369 (15)−0.0158 (12)−0.0043 (12)−0.0037 (12)

Geometric parameters (Å, °)

O1—C71.205 (2)C5—C61.392 (3)
O2—C71.320 (2)C5—C101.507 (3)
O2—H20.959 (10)C6—H60.9500
O3—C81.205 (2)C11—C121.498 (3)
O4—C81.319 (2)C12—C131.391 (3)
O4—H40.941 (10)C12—C14i1.395 (3)
O5—C91.236 (2)C13—C141.390 (3)
O6—C91.280 (2)C13—H130.9500
O7—C101.296 (2)C14—C12i1.395 (3)
O7—H70.962 (10)C14—C151.503 (3)
O8—C101.231 (2)N1—C191.482 (3)
O9—C111.210 (2)N1—C181.489 (3)
O10—C111.321 (2)N1—C161.489 (3)
O10—H100.938 (10)N1—C171.489 (3)
O11—C151.217 (2)C16—H16A0.9800
O12—C151.298 (2)C16—H16B0.9800
O12—H120.957 (10)C16—H16C0.9800
C1—C61.380 (3)C17—H17A0.9800
C1—C21.395 (3)C17—H17B0.9800
C1—C71.494 (3)C17—H17C0.9800
C2—C31.395 (3)C18—H18A0.9800
C2—C81.507 (3)C18—H18B0.9800
C3—C41.392 (3)C18—H18C0.9800
C3—H30.9500C19—H19A0.9800
C4—C51.415 (3)C19—H19B0.9800
C4—C91.517 (3)C19—H19C0.9800
C7—O2—H2111.2 (15)C14i—C12—C11120.69 (16)
C8—O4—H4112.9 (13)C12—C13—C14121.57 (17)
C10—O7—H7106.7 (12)C12—C13—H13119.2
C11—O10—H10105.5 (13)C14—C13—H13119.2
C15—O12—H12114.8 (13)C13—C14—C12i119.26 (17)
C6—C1—C2118.85 (17)C13—C14—C15118.14 (16)
C6—C1—C7120.19 (17)C12i—C14—C15122.53 (16)
C2—C1—C7120.92 (17)O11—C15—O12126.05 (18)
C1—C2—C3119.21 (17)O11—C15—C14122.25 (17)
C1—C2—C8122.22 (16)O12—C15—C14111.59 (16)
C3—C2—C8118.52 (17)C19—N1—C18109.77 (18)
C4—C3—C2121.91 (17)C19—N1—C16109.59 (17)
C4—C3—H3119.0C18—N1—C16109.03 (17)
C2—C3—H3119.0C19—N1—C17108.99 (17)
C3—C4—C5118.80 (17)C18—N1—C17109.11 (17)
C3—C4—C9115.37 (17)C16—N1—C17110.34 (18)
C5—C4—C9125.82 (17)N1—C16—H16A109.5
C6—C5—C4118.12 (17)N1—C16—H16B109.5
C6—C5—C10113.39 (17)H16A—C16—H16B109.5
C4—C5—C10128.46 (17)N1—C16—H16C109.5
C1—C6—C5123.02 (18)H16A—C16—H16C109.5
C1—C6—H6118.5H16B—C16—H16C109.5
C5—C6—H6118.5N1—C17—H17A109.5
O1—C7—O2124.56 (18)N1—C17—H17B109.5
O1—C7—C1123.77 (18)H17A—C17—H17B109.5
O2—C7—C1111.67 (17)N1—C17—H17C109.5
O3—C8—O4126.17 (19)H17A—C17—H17C109.5
O3—C8—C2123.43 (18)H17B—C17—H17C109.5
O4—C8—C2110.35 (16)N1—C18—H18A109.5
O5—C9—O6123.75 (17)N1—C18—H18B109.5
O5—C9—C4118.97 (17)H18A—C18—H18B109.5
O6—C9—C4117.23 (17)N1—C18—H18C109.5
O8—C10—O7120.75 (18)H18A—C18—H18C109.5
O8—C10—C5118.01 (17)H18B—C18—H18C109.5
O7—C10—C5121.19 (17)N1—C19—H19A109.5
O9—C11—O10124.15 (18)N1—C19—H19B109.5
O9—C11—C12122.01 (17)H19A—C19—H19B109.5
O10—C11—C12113.81 (16)N1—C19—H19C109.5
C13—C12—C14i119.16 (16)H19A—C19—H19C109.5
C13—C12—C11119.71 (16)H19B—C19—H19C109.5
C6—C1—C2—C31.7 (3)C1—C2—C8—O4−111.46 (19)
C7—C1—C2—C3−175.72 (17)C3—C2—C8—O470.9 (2)
C6—C1—C2—C8−175.85 (17)C3—C4—C9—O5−28.3 (3)
C7—C1—C2—C86.7 (3)C5—C4—C9—O5152.83 (19)
C1—C2—C3—C4−3.6 (3)C3—C4—C9—O6149.16 (18)
C8—C2—C3—C4174.08 (17)C5—C4—C9—O6−29.7 (3)
C2—C3—C4—C52.6 (3)C6—C5—C10—O822.3 (3)
C2—C3—C4—C9−176.26 (17)C4—C5—C10—O8−155.63 (19)
C3—C4—C5—C60.1 (3)C6—C5—C10—O7−155.23 (17)
C9—C4—C5—C6178.88 (17)C4—C5—C10—O726.9 (3)
C3—C4—C5—C10177.89 (18)O9—C11—C12—C13−146.62 (19)
C9—C4—C5—C10−3.3 (3)O10—C11—C12—C1331.6 (2)
C2—C1—C6—C51.0 (3)O9—C11—C12—C14i25.7 (3)
C7—C1—C6—C5178.48 (17)O10—C11—C12—C14i−156.07 (17)
C4—C5—C6—C1−1.9 (3)C14i—C12—C13—C14−1.2 (3)
C10—C5—C6—C1179.95 (17)C11—C12—C13—C14171.26 (17)
C6—C1—C7—O1−163.87 (19)C12—C13—C14—C12i1.2 (3)
C2—C1—C7—O113.5 (3)C12—C13—C14—C15−175.65 (17)
C6—C1—C7—O216.4 (3)C13—C14—C15—O11123.1 (2)
C2—C1—C7—O2−166.19 (17)C12i—C14—C15—O11−53.6 (3)
C1—C2—C8—O371.0 (3)C13—C14—C15—O12−53.2 (2)
C3—C2—C8—O3−106.6 (2)C12i—C14—C15—O12130.02 (19)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O6ii0.96 (1)1.64 (1)2.5885 (18)171 (2)
O4—H4···O11iii0.94 (1)1.81 (1)2.7166 (19)162 (2)
O7—H7···O60.96 (1)1.48 (1)2.4334 (19)169 (2)
O10—H10···O5iv0.94 (1)1.76 (1)2.6890 (18)168 (2)
O12—H12···O8v0.96 (1)1.60 (1)2.5308 (19)163 (2)

Symmetry codes: (ii) −x, y−1/2, −z+1/2; (iii) x+1, y, z+1; (iv) x, −y+1/2, z−1/2; (v) −x−1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2444).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Brandenburg, K. (2006). DIAMOND Version 3.1d. Crystal Impact GbR, Bonn, Germany.
  • Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SAINT-Plus Version 7.23a. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2006). APEX2. Version 2.1-RC13. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cunha-Silva, L., Mafra, L., Ananias, D., Carlos, L. D., Rocha, J. & Paz, F. A. A. (2007). Chem. Mater.19, 3527–3538.
  • Dale, S. H., Elsegood, M. R. J., Hemmings, M. & Wilkinson, A. L. (2004). CrystEngComm, 6, 207–214.
  • Fabelo, O., Cañadillas-Delgado, L., Delgado, F. S., Lorenzo-Luis, P., Laz, M. M., Julve, M. & Ruiz-Pérez, C. (2005). Cryst. Growth Des.5, 1163–1167.
  • Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem.26, 381–383.
  • Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.
  • Ruiz-Pérez, C., Loreno-Luis, P. A., Hernández-Molina, M., Laz, M. M., Gili, P. & Julve, M. (2004). Cryst. Growth Des.4, 57–61.
  • Sheldrick, G. M. (1998). SADABS. Version 2.01. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Shi, F.-N., Cunha-Silva, L., Sá Ferreira, R. A., Mafra, L., Trindade, T., Carlos, L. D., Paz, F. A. A. & Rocha, J. (2007). J. Am. Chem. Soc. doi:10.1021/ja074119k. In the press.
  • Steed, J. W. & Atwood, J. L. (2000). Supramolecular Chemistry. Chichester: John Wiley & Sons Ltd.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography