PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o65.
Published online 2007 December 6. doi:  10.1107/S1600536807056024
PMCID: PMC2915023

N′-[1-(2-Pyrid­yl)ethyl­idene]nicotino­hydrazide

Abstract

In the the title compound, C13H12N4O, the dihedral angle between the aromatic ring planes is 21.7 (3)°. In the crystal structure, interm­olecular N—H(...)O hydrogen bonds lead to C(4) chains.

Related literature

For related literature, see: Tai et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o65-scheme1.jpg

Experimental

Crystal data

  • C13H12N4O
  • M r = 240.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o65-efi1.jpg
  • a = 18.264 (3) Å
  • b = 7.9300 (9) Å
  • c = 16.471 (2) Å
  • V = 2385.5 (5) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 298 (2) K
  • 0.46 × 0.43 × 0.40 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.960, T max = 0.965
  • 9146 measured reflections
  • 2107 independent reflections
  • 1568 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.106
  • S = 1.06
  • 2107 reflections
  • 164 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807056024/hb2634sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807056024/hb2634Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (20671073), NingXia Natural Gas Transfer Key Laboratory (2004007), the Science and Technology Found­ation of Weifang and Weifang University for a research grant.

supplementary crystallographic information

Comment

As part of our ongoing studies of the coordination chemistry of aroylhydrazones ligands (Tai et al., 2003), we now report the synthesis and structure of the title compound, (I), (Fig. 1).

In the molecule of (I), both C8—N2 [1.284 (2) Å] and C1—O1 [1.220 (2) Å] are close to double-bond separations, indicating that the Lewis structure shown in the scheme is only an approximation to the electron distribution in the molecule. Otherwise, the geometrical parameters for (I) are normal. The dihedral angle between the pyridine ring mean planes is 21.7 (3)°, indicating that the molecule is significantly twisted, perhaps for steric reasons.

In the crystal, an N—H···O hydrogen bond (Table 1) leads to C(4) chains.

Experimental

10 mmol of 2-acetylpyridine (10 mmol) was added to a solution of nicotinic acid hydrazine (10 mmol) in 10 ml of ethanol. The mixture was continuously stirred for 3 h at refluxing temperature, evaporating some ethanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 68%). Colourless blocks of (I) were obtained by evaporation from a methanol solution after two weeks.

Refinement

The H atoms were placed geometrically (C—H = 0.93–0.96 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.
The molecular structure of (I) showing 30% displacement ellipsoids (arbitrary spheres for the H atoms).

Crystal data

C13H12N4ODx = 1.338 Mg m3
Mr = 240.27Mo Kα radiation λ = 0.71073 Å
Orthorhombic, PbcnCell parameters from 2977 reflections
a = 18.264 (3) Åθ = 2.2–27.1º
b = 7.9300 (9) ŵ = 0.09 mm1
c = 16.471 (2) ÅT = 298 (2) K
V = 2385.5 (5) Å3Block, colourless
Z = 80.46 × 0.43 × 0.40 mm
F000 = 1008

Data collection

Bruker SMART CCD diffractometer2107 independent reflections
Radiation source: fine-focus sealed tube1568 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.041
T = 298(2) Kθmax = 25.0º
ω scansθmin = 2.5º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −17→21
Tmin = 0.960, Tmax = 0.965k = −9→8
9146 measured reflectionsl = −19→16

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.038  w = 1/[σ2(Fo2) + (0.0375P)2 + 1.131P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.106(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.21 e Å3
2107 reflectionsΔρmin = −0.17 e Å3
164 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0194 (13)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.74333 (8)0.92565 (18)0.94870 (8)0.0347 (4)
H10.72080.83090.94420.042*
N20.71633 (8)1.05276 (17)0.99711 (9)0.0342 (4)
N30.81694 (9)0.5927 (2)0.76098 (10)0.0499 (5)
N40.55759 (8)1.1916 (2)1.09086 (10)0.0472 (5)
O10.83904 (7)1.08958 (17)0.91028 (9)0.0518 (4)
C10.80666 (10)0.9551 (2)0.90842 (11)0.0346 (4)
C20.83536 (9)0.8086 (2)0.86108 (10)0.0329 (4)
C30.79344 (10)0.7247 (2)0.80384 (11)0.0399 (5)
H30.74600.76270.79470.048*
C40.88433 (12)0.5398 (3)0.77688 (13)0.0540 (6)
H40.90130.44530.74930.065*
C50.93084 (11)0.6157 (3)0.83154 (13)0.0553 (6)
H50.97780.57400.84000.066*
C60.90614 (10)0.7548 (3)0.87343 (12)0.0451 (5)
H60.93670.81130.90940.054*
C70.60952 (12)0.8730 (3)1.03313 (15)0.0600 (6)
H7A0.57090.88750.99420.090*
H7B0.58880.85391.08590.090*
H7C0.63910.77791.01800.090*
C80.65592 (10)1.0280 (2)1.03520 (10)0.0352 (4)
C90.63030 (9)1.1754 (2)1.08347 (10)0.0339 (4)
C100.67883 (10)1.2881 (2)1.11839 (11)0.0390 (5)
H100.72911.27191.11330.047*
C110.65202 (12)1.4242 (3)1.16058 (13)0.0503 (5)
H110.68371.50111.18470.060*
C120.57744 (12)1.4446 (3)1.16657 (14)0.0561 (6)
H120.55761.53661.19380.067*
C130.53299 (12)1.3260 (3)1.13141 (14)0.0560 (6)
H130.48261.33991.13610.067*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0408 (9)0.0252 (8)0.0381 (8)−0.0008 (7)0.0054 (7)−0.0048 (7)
N20.0403 (9)0.0279 (8)0.0344 (8)0.0058 (7)0.0007 (6)−0.0029 (7)
N30.0511 (11)0.0497 (10)0.0490 (10)0.0043 (9)−0.0005 (8)−0.0147 (9)
N40.0367 (9)0.0506 (11)0.0542 (10)0.0046 (8)0.0029 (7)−0.0111 (9)
O10.0480 (8)0.0377 (8)0.0698 (10)−0.0094 (7)0.0109 (7)−0.0114 (7)
C10.0365 (10)0.0304 (10)0.0370 (10)0.0005 (8)−0.0021 (8)−0.0010 (8)
C20.0357 (10)0.0316 (10)0.0313 (9)−0.0005 (8)0.0058 (7)0.0018 (8)
C30.0381 (10)0.0393 (11)0.0422 (11)0.0032 (9)0.0008 (8)−0.0026 (9)
C40.0550 (13)0.0546 (14)0.0523 (13)0.0154 (11)0.0061 (10)−0.0168 (11)
C50.0416 (12)0.0690 (15)0.0552 (13)0.0182 (11)−0.0003 (10)−0.0128 (12)
C60.0389 (11)0.0552 (13)0.0413 (11)0.0016 (9)−0.0003 (8)−0.0074 (10)
C70.0580 (14)0.0460 (13)0.0760 (16)−0.0101 (11)0.0213 (12)−0.0188 (12)
C80.0368 (10)0.0335 (10)0.0352 (10)0.0011 (8)0.0012 (8)−0.0009 (8)
C90.0376 (10)0.0338 (10)0.0304 (9)0.0013 (8)0.0019 (7)0.0003 (8)
C100.0389 (10)0.0403 (11)0.0378 (10)−0.0005 (9)0.0025 (8)−0.0033 (9)
C110.0559 (13)0.0454 (12)0.0495 (12)−0.0060 (10)0.0033 (10)−0.0136 (10)
C120.0605 (14)0.0483 (13)0.0594 (13)0.0099 (11)0.0116 (11)−0.0154 (11)
C130.0425 (12)0.0581 (14)0.0672 (15)0.0111 (11)0.0059 (11)−0.0127 (12)

Geometric parameters (Å, °)

N1—C11.354 (2)C5—H50.9300
N1—N21.3765 (19)C6—H60.9300
N1—H10.8600C7—C81.494 (3)
N2—C81.284 (2)C7—H7A0.9600
N3—C41.326 (3)C7—H7B0.9600
N3—C31.333 (2)C7—H7C0.9600
N4—C131.336 (3)C8—C91.489 (2)
N4—C91.340 (2)C9—C101.384 (3)
O1—C11.220 (2)C10—C111.374 (3)
C1—C21.494 (2)C10—H100.9300
C2—C61.377 (3)C11—C121.375 (3)
C2—C31.385 (2)C11—H110.9300
C3—H30.9300C12—C131.371 (3)
C4—C51.376 (3)C12—H120.9300
C4—H40.9300C13—H130.9300
C5—C61.377 (3)
C1—N1—N2117.63 (14)C8—C7—H7A109.5
C1—N1—H1121.2C8—C7—H7B109.5
N2—N1—H1121.2H7A—C7—H7B109.5
C8—N2—N1118.61 (15)C8—C7—H7C109.5
C4—N3—C3116.25 (17)H7A—C7—H7C109.5
C13—N4—C9117.09 (17)H7B—C7—H7C109.5
O1—C1—N1123.55 (17)N2—C8—C9114.28 (16)
O1—C1—C2121.51 (16)N2—C8—C7127.01 (17)
N1—C1—C2114.94 (15)C9—C8—C7118.68 (16)
C6—C2—C3118.06 (17)N4—C9—C10122.35 (17)
C6—C2—C1119.59 (16)N4—C9—C8115.81 (16)
C3—C2—C1122.34 (16)C10—C9—C8121.85 (16)
N3—C3—C2124.04 (17)C11—C10—C9119.30 (18)
N3—C3—H3118.0C11—C10—H10120.3
C2—C3—H3118.0C9—C10—H10120.3
N3—C4—C5124.33 (19)C10—C11—C12118.80 (19)
N3—C4—H4117.8C10—C11—H11120.6
C5—C4—H4117.8C12—C11—H11120.6
C4—C5—C6118.39 (19)C13—C12—C11118.39 (19)
C4—C5—H5120.8C13—C12—H12120.8
C6—C5—H5120.8C11—C12—H12120.8
C2—C6—C5118.84 (19)N4—C13—C12124.0 (2)
C2—C6—H6120.6N4—C13—H13118.0
C5—C6—H6120.6C12—C13—H13118.0
C1—N1—N2—C8179.30 (16)N1—N2—C8—C9−177.98 (14)
N2—N1—C1—O1−3.1 (3)N1—N2—C8—C7−0.3 (3)
N2—N1—C1—C2176.40 (14)C13—N4—C9—C102.3 (3)
O1—C1—C2—C653.1 (3)C13—N4—C9—C8−177.68 (17)
N1—C1—C2—C6−126.43 (18)N2—C8—C9—N4148.85 (17)
O1—C1—C2—C3−126.2 (2)C7—C8—C9—N4−29.1 (3)
N1—C1—C2—C354.3 (2)N2—C8—C9—C10−31.1 (2)
C4—N3—C3—C21.4 (3)C7—C8—C9—C10150.92 (19)
C6—C2—C3—N31.3 (3)N4—C9—C10—C11−1.6 (3)
C1—C2—C3—N3−179.39 (17)C8—C9—C10—C11178.37 (18)
C3—N3—C4—C5−2.5 (3)C9—C10—C11—C12−0.2 (3)
N3—C4—C5—C60.7 (4)C10—C11—C12—C131.3 (3)
C3—C2—C6—C5−3.1 (3)C9—N4—C13—C12−1.2 (3)
C1—C2—C6—C5177.58 (18)C11—C12—C13—N4−0.6 (4)
C4—C5—C6—C22.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.273.125 (2)171

Symmetry codes: (i) −x+3/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2634).

References

  • Bruker (2000). SMART, SAINT, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Tai, X.-S., Yin, X.-H., Tan, M.-Y. & Li, Y.-Z. (2003). Acta Cryst. E59, o681–o682.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography