PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o56.
Published online 2007 December 6. doi:  10.1107/S1600536807059223
PMCID: PMC2915014

(S)-2-(Iodo­meth­yl)-1-tosyl­pyrrolidine

Abstract

In the title mol­ecule, C12H16INO2S, the pyrrolidine ring is in an envelope conformation. The dihedral angle between the four essentially coplanar atoms of the pyrrolidine ring and the benzene ring is 75.5 (4)°.

Related literature

For leading reviews, see: Allemann et al. (2004 [triangle]); List (2004 [triangle]); Notz et al. (2004 [triangle]); For related literature, see: Bahmanyar et al. (2003 [triangle]); List et al. (2000 [triangle]); Northrup & MacMillan, (2002 [triangle]); Sakthivel et al. (2001 [triangle]); Barbas et al. (1997 [triangle]); Dalko & Moisan (2004 [triangle]); Eder et al. (1971 [triangle]); Hajos & Parrish (1974 [triangle]); Machajewski & Wong (2000 [triangle]); Seayed & List (2005 [triangle]); Wagner et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o56-scheme1.jpg

Experimental

Crystal data

  • C12H16INO2S
  • M r = 365.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o56-efi1.jpg
  • a = 7.6345 (16) Å
  • b = 7.7084 (16) Å
  • c = 12.071 (3) Å
  • β = 93.17 (1)°
  • V = 709.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.40 mm−1
  • T = 294 (2) K
  • 0.25 × 0.16 × 0.16 mm

Data collection

  • Bruker APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.586, T max = 0.701
  • 4398 measured reflections
  • 2424 independent reflections
  • 1787 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.092
  • S = 1.02
  • 2424 reflections
  • 156 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.48 e Å−3
  • Absolute structure: Flack (1983 [triangle]), with 664 Friedel pairs
  • Flack parameter: 0.02 (5)

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2000 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807059223/lh2560sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807059223/lh2560Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We acknowledge financial support from the Research Fund for the new faculty at the State Key Laboratory of Applied Organic Chemistry.

supplementary crystallographic information

Comment

During the past few years, the field of asymmetric catalysis, previously dominated by biocatalysis, has been complemented by organocatalysis (List, 2004; Notz et al., 2004; Allemann et al., 2004) using small organic molecules as a third powerful tool. Organocatalysis reagents are usually non-toxic, highly efficient and selective, readily available, metal-free and robust, explaining the growing interest in their use for organic synthesis (Dalko & Moisan, 2004; Seayed & List, 2005). Considering the above features, low cost and availability in both enantiomeric forms, proline is attractive especially to synthetic chemists. Developed by two industrial laboratories in the early 1970 s (Hajos & Parrish, 1974; Eder et al., 1971), a proline-catalyzed aldol reaction was reinvestigated recently and many novel results were obtained. For example, direct intermolecular asymmetric aldol reactions between aldehydes and the ketones (List et al., 2000; Sakthivel et al., 2001) or aldehydes (Northrup & MacMillan, 2002) afforded good to excellent enantioselectivity. The origin of stereoselectivity in this type of aldol reaction was examined in detail (Bahmanyar et al., 2003) and it was generally accepted this involved enamine intermediates. Similar mechanisms are found in type-1 aldolases (Machajewski & Wong, 2000) and catalytic antibodies that are type-1 aldolase mimics (Wagner et al., 1995; Barbas et al., 1997).

The molecular structure of the title compound (Fig.1) contains a pyrrolidine ring, which exists in an envelope conformation. The dihedral angle between the plane of atoms N1–C1–C3–C5 and the benzene ring is 75.5 (4) °, which potentially provides enough space as a binding-site for substrates during asymmetric catalysis process.

Experimental

The title compound was prepared by the cascade reaction of p-toluenesulfonyl chloride with (S)-prolinol (commercial available) and iodine. 1H NMR (400 MHz, CDCl3): 7.73 (d, J = 6.8 Hz, 2H), 7.34 (d, J = 6.8 Hz, 2H), 3.77–3.71 (m, 1H), 3.63–3.60 (m, 1H), 3.51–3.46 (m, 1H), 3.23 (t, J = 9.6 Hz, 2H), 2.44 (s, 3H), 1.90–1.77 (m, 3H), 1.56–1.50 (m, 1H) p.p.m.; 13C NMR (100 MHz, CDCl3): 143.7, 134.2, 129.8 (2 C), 127.5 (2 C), 60.7, 50.0, 31.9, 23.8, 21.5, 11.5 p.p.m.. Single crystals suitable for X-ray determination were obtained by slow evaporation of a EtOAc solution over a period of several days.

Refinement

All H atoms were placed geometrically (C—H distances were set to 0.98, 0.97, 0.96 and 0.93 A° for atoms CH, CH2, CH3, and CH (phenyl), respectively) and refined with a riding model, with Uiso(H) = 1.2 or 1.5 times Ueq(C).

Figures

Fig. 1.
The molecular structure showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C12H16INO2SF000 = 360
Mr = 365.22Dx = 1.710 Mg m3
Monoclinic, P21Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1240 reflections
a = 7.6345 (16) Åθ = 3.1–21.5º
b = 7.7084 (16) ŵ = 2.40 mm1
c = 12.071 (3) ÅT = 294 (2) K
β = 93.17 (1)ºBlock, colorless
V = 709.3 (3) Å30.25 × 0.16 × 0.16 mm
Z = 2

Data collection

Bruker APEX CCD area-detector diffractometer2424 independent reflections
Radiation source: fine-focus sealed tube1787 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.033
T = 294(2) Kθmax = 27.9º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.586, Tmax = 0.701k = −6→9
4398 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037  w = 1/[σ2(Fo2) + (0.0387P)2 + 0.1584P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.092(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.43 e Å3
2424 reflectionsΔρmin = −0.48 e Å3
156 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0027 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 664 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.02 (5)

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
I10.74117 (5)1.0996 (2)0.25200 (3)0.0737 (2)
S10.26704 (16)0.6075 (3)0.31530 (11)0.0533 (3)
O20.4219 (6)0.5601 (6)0.2627 (4)0.0703 (15)
C20.3980 (7)0.9338 (7)0.3147 (5)0.0492 (14)
H20.37900.91880.23430.059*
C10.5919 (8)0.9208 (9)0.3477 (5)0.0572 (16)
H1A0.63200.80330.33550.069*
H1B0.61080.94700.42600.069*
C30.3090 (8)1.0976 (12)0.3511 (5)0.0749 (17)
H3A0.21551.13110.29770.090*
H3B0.39251.19220.35940.090*
C50.1722 (9)0.8691 (9)0.4444 (5)0.0579 (16)
H5A0.16850.80740.51430.069*
H5B0.05660.86680.40680.069*
C40.2361 (10)1.0518 (9)0.4619 (6)0.074 (2)
H4A0.32651.05780.52140.089*
H4B0.14061.12870.47880.089*
N10.3058 (6)0.7944 (6)0.3740 (4)0.0484 (11)
O10.1979 (6)0.4989 (6)0.3981 (4)0.0676 (12)
C6−0.0698 (7)0.5882 (12)0.2289 (4)0.0566 (15)
H6−0.09570.53810.29620.068*
C70.1002 (8)0.6359 (9)0.2101 (4)0.0491 (18)
C9−0.0007 (11)0.7369 (10)0.0301 (5)0.073 (2)
H90.02350.7888−0.03690.088*
C11−0.2011 (7)0.6151 (13)0.1476 (5)0.0652 (16)
H11−0.31470.57990.16050.078*
C10−0.1693 (9)0.6917 (9)0.0491 (5)0.0614 (17)
C80.1366 (10)0.7067 (9)0.1096 (5)0.0651 (19)
H80.25140.73430.09440.078*
C12−0.3186 (12)0.7276 (15)−0.0368 (7)0.107 (3)
H12A−0.35450.8465−0.03150.160*
H12B−0.41600.6532−0.02330.160*
H12C−0.27950.7057−0.10970.160*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
I10.0663 (3)0.0651 (3)0.0898 (3)−0.0125 (3)0.00491 (18)0.0064 (3)
S10.0550 (7)0.0350 (7)0.0701 (8)0.0009 (11)0.0039 (6)−0.0016 (12)
O20.062 (2)0.042 (4)0.107 (3)0.006 (2)0.007 (2)−0.016 (2)
C20.060 (4)0.032 (3)0.056 (3)0.001 (3)0.000 (3)0.003 (3)
C10.062 (4)0.047 (4)0.062 (4)−0.006 (3)−0.002 (3)0.002 (3)
C30.079 (4)0.036 (3)0.111 (5)−0.002 (5)0.020 (3)0.004 (6)
C50.067 (4)0.050 (4)0.058 (4)0.002 (3)0.009 (3)−0.005 (3)
C40.082 (5)0.050 (5)0.094 (5)0.000 (3)0.022 (4)−0.025 (4)
N10.052 (3)0.035 (3)0.058 (3)0.000 (2)0.003 (2)−0.002 (2)
O10.084 (3)0.042 (3)0.076 (3)−0.006 (2)−0.004 (2)0.016 (2)
C60.064 (3)0.055 (4)0.052 (3)−0.013 (4)0.014 (2)−0.010 (4)
C70.062 (3)0.036 (5)0.050 (3)−0.006 (3)0.013 (2)−0.004 (3)
C90.109 (6)0.070 (5)0.042 (4)−0.012 (4)0.007 (4)−0.002 (3)
C110.059 (3)0.067 (5)0.070 (4)0.004 (5)0.011 (3)−0.012 (5)
C100.075 (4)0.056 (4)0.053 (4)−0.002 (3)−0.002 (3)−0.012 (3)
C80.074 (4)0.063 (5)0.061 (4)−0.024 (4)0.021 (3)−0.005 (3)
C120.110 (7)0.118 (8)0.089 (6)−0.007 (6)−0.028 (5)−0.001 (5)

Geometric parameters (Å, °)

I1—C12.163 (6)C5—H5B0.9700
S1—O21.420 (4)C4—H4A0.9700
S1—O11.427 (4)C4—H4B0.9700
S1—N11.625 (5)C6—C111.379 (8)
S1—C71.762 (6)C6—C71.380 (8)
C2—N11.490 (7)C6—H60.9300
C2—C31.511 (10)C7—C81.372 (8)
C2—C11.515 (8)C9—C101.366 (10)
C2—H20.9800C9—C81.401 (10)
C1—H1A0.9700C9—H90.9300
C1—H1B0.9700C11—C101.361 (9)
C3—C41.518 (9)C11—H110.9300
C3—H3A0.9700C10—C121.523 (10)
C3—H3B0.9700C8—H80.9300
C5—N11.480 (7)C12—H12A0.9600
C5—C41.502 (9)C12—H12B0.9600
C5—H5A0.9700C12—H12C0.9600
O2—S1—O1120.8 (3)C3—C4—H4A111.1
O2—S1—N1106.7 (3)C5—C4—H4B111.1
O1—S1—N1106.3 (3)C3—C4—H4B111.1
O2—S1—C7107.2 (3)H4A—C4—H4B109.1
O1—S1—C7107.3 (3)C5—N1—C2110.8 (4)
N1—S1—C7108.1 (3)C5—N1—S1118.7 (4)
N1—C2—C3103.3 (5)C2—N1—S1120.6 (4)
N1—C2—C1107.9 (5)C11—C6—C7119.7 (6)
C3—C2—C1115.3 (5)C11—C6—H6120.1
N1—C2—H2110.0C7—C6—H6120.1
C3—C2—H2110.0C8—C7—C6119.3 (6)
C1—C2—H2110.0C8—C7—S1120.8 (5)
C2—C1—I1110.7 (4)C6—C7—S1119.8 (4)
C2—C1—H1A109.5C10—C9—C8121.2 (6)
I1—C1—H1A109.5C10—C9—H9119.4
C2—C1—H1B109.5C8—C9—H9119.4
I1—C1—H1B109.5C10—C11—C6122.0 (6)
H1A—C1—H1B108.1C10—C11—H11119.0
C2—C3—C4104.8 (6)C6—C11—H11119.0
C2—C3—H3A110.8C11—C10—C9118.2 (6)
C4—C3—H3A110.8C11—C10—C12120.7 (7)
C2—C3—H3B110.8C9—C10—C12121.1 (7)
C4—C3—H3B110.8C7—C8—C9119.4 (6)
H3A—C3—H3B108.9C7—C8—H8120.3
N1—C5—C4102.5 (5)C9—C8—H8120.3
N1—C5—H5A111.3C10—C12—H12A109.5
C4—C5—H5A111.3C10—C12—H12B109.5
N1—C5—H5B111.3H12A—C12—H12B109.5
C4—C5—H5B111.3C10—C12—H12C109.5
H5A—C5—H5B109.2H12A—C12—H12C109.5
C5—C4—C3103.1 (6)H12B—C12—H12C109.5
C5—C4—H4A111.1
N1—C2—C1—I1173.7 (4)C7—S1—N1—C2−72.0 (5)
C3—C2—C1—I1−71.5 (6)C11—C6—C7—C8−1.2 (12)
N1—C2—C3—C424.5 (7)C11—C6—C7—S1178.1 (7)
C1—C2—C3—C4−92.9 (7)O2—S1—C7—C8−36.5 (7)
N1—C5—C4—C336.7 (7)O1—S1—C7—C8−167.6 (6)
C2—C3—C4—C5−38.7 (7)N1—S1—C7—C878.2 (6)
C4—C5—N1—C2−22.3 (7)O2—S1—C7—C6144.1 (6)
C4—C5—N1—S1−168.3 (5)O1—S1—C7—C613.0 (7)
C3—C2—N1—C5−1.4 (6)N1—S1—C7—C6−101.2 (7)
C1—C2—N1—C5121.1 (5)C7—C6—C11—C10−1.5 (14)
C3—C2—N1—S1143.9 (4)C6—C11—C10—C92.3 (13)
C1—C2—N1—S1−93.6 (5)C6—C11—C10—C12−177.0 (8)
O2—S1—N1—C5−174.4 (4)C8—C9—C10—C11−0.3 (11)
O1—S1—N1—C5−44.3 (5)C8—C9—C10—C12179.0 (7)
C7—S1—N1—C570.6 (5)C6—C7—C8—C93.1 (11)
O2—S1—N1—C243.0 (5)S1—C7—C8—C9−176.3 (5)
O1—S1—N1—C2173.1 (4)C10—C9—C8—C7−2.4 (11)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2560).

References

  • Allemann, C., Gordillo, R., Clemente, F. R., Cheong, P. H. & Houk, K. N. (2004). Acc. Chem. Res.37, 558–569. [PubMed]
  • Bahmanyar, S., Houk, K. N., Martin, H. J. & List, B. (2003). J. Am. Chem. Soc.125, 2475–2479. [PubMed]
  • Barbas, C. F. III, Heine, A., Zhong, G., Hoffmann, T., Gramatikova, S., Björnestedt, R., List, B., Anderson, J., Stura, E. A., Wilson, I. A. & Lerner, R. A. (1997). Science, 278, 2085–2092. [PubMed]
  • Bruker (2000). SMART, SAINT, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Dalko, P. L. & Moisan, L. (2004). Angew. Chem. Int. Ed.43, 5138–5175. [PubMed]
  • Eder, U., Sauer, G. & Wiechert, R. (1971). Angew. Chem. Int. Ed. Engl.10, 496–497.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hajos, Z. G. & Parrish, D. R. (1974). J. Org. Chem.39, 1615–1621.
  • List, B. (2004). Acc. Chem. Res.37, 548–557. [PubMed]
  • List, B., Lerner, R. A. & Barbas, C. F. III (2000). J. Am. Chem. Soc.122, 2395–2396.
  • Machajewski, T. D. & Wong, C.-H. (2000). Angew. Chem. Int. Ed.39, 1352–1374. [PubMed]
  • Northrup, A. B. & MacMillan, D. W. C. (2002). J. Am. Chem. Soc.124, 6798–6799. [PubMed]
  • Notz, W., Tanaka, F. & Barbas, C. F. III (2004). Acc. Chem. Res.37, 580–591. [PubMed]
  • Sakthivel, K., Notz, W., Bui, T. & Barbas, C. F. III (2001). J. Am. Chem. Soc.123, 5260–5267. [PubMed]
  • Seayed, J. & List, B. (2005). Org. Biomol. Chem.3, 719–724. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Wagner, J., Lerner, R. A. & Barbas, C. F. III (1995). Science, 270, 1797–1800. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography