PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o55.
Published online 2007 December 6. doi:  10.1107/S1600536807049604
PMCID: PMC2915013

2-Bromo­benzaldehyde cyano­hydrin

Abstract

The title compound [alternatively called (2-bromo­phen­yl)­(hydr­oxy)acetonitrile], C8H6BrNO, is the reaction product of 2-bromo­benzaldehyde and hydrogen cyanide. Bond lengths and angles are normal. In the crystal structure, an intermolecular hydrogen bond between the hydr­oxy group and the nitrile N atom is established. In agreement with bonding considerations, a linear C—N(...)H acceptor geometry is observed. Each mol­ecule is a single donor and a single acceptor; extended hydrogen-bonded chains are formed along [100].

Related literature

For the synthesis of the title compound, see: Becker et al. (2001 [triangle]). For the crystal structure of a related compound, see: Flores-Morales et al. (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o55-scheme1.jpg

Experimental

Crystal data

  • C8H6BrNO
  • M r = 212.05
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o55-efi1.jpg
  • a = 8.0538 (3) Å
  • b = 13.9970 (5) Å
  • c = 14.2969 (5) Å
  • V = 1611.68 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.04 mm−1
  • T = 200 (2) K
  • 0.14 × 0.09 × 0.03 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.624, T max = 0.86
  • 19593 measured reflections
  • 1844 independent reflections
  • 1351 reflections with I > 2σ(I)
  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.083
  • S = 1.02
  • 1844 reflections
  • 102 parameters
  • Only H-atom displacement parameters refined
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: COLLECT (Nonius, 2004 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807049604/lh2526sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807049604/lh2526Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Peter Mayer and Sandra Albrecht for professional support.

supplementary crystallographic information

Comment

The title compound was prepared as in intermediate in the synthesis of 2-bromomandelic acid.

In the title compound a phenyl moiety, a hydroxy group and a cyano group are bonded to one C atom. The aromatic moiety bears a Br atom in 2- position to this C atom (Fig. 1). Bond lengths and angles show no significant deviations from values apparent in the literature for similar bonds (Allen et al., 1987).

In the crystal structure, hydrogen bonds between the hydroxy groups and the N atom result in the formation of infinite chains along [100]. The aromatic moieties are arranged parallel to each other (Fig. 2).

Experimental

The title compound was obtained as an intermediate in the synthesis of 2-bromomandelic acid according to a published procedure (Becker et al., 2001) upon addition of 2-bromobenzaldehyde to an acidified aqueous solution of potassium cyanide. After workup, crystals suitable for X-ray analysis were obtained upon free evaporation of a solution of the compound in diethylether.

Refinement

All H atoms were located in a difference map and refined as riding on their parent atoms. One common isotropic displacement parameter for all H atoms was refined.

Figures

Fig. 1.
The molecular structure with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
Fig. 2.
The packing of viewed along [-1 0 0]. Hydrogen bonds are drawn as yellow bars.

Crystal data

C8H6BrNOF000 = 832
Mr = 212.05Dx = 1.748 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 10818 reflections
a = 8.0538 (3) Åθ = 3.1–27.5º
b = 13.9970 (5) ŵ = 5.04 mm1
c = 14.2969 (5) ÅT = 200 (2) K
V = 1611.68 (10) Å3Platelet, colourless
Z = 80.14 × 0.09 × 0.03 mm

Data collection

Nonius KappaCCD diffractometer1844 independent reflections
Radiation source: rotating anode1351 reflections with I > 2σ(I)
Monochromator: MONTEL, graded multilayered X-ray opticsRint = 0.040
T = 200(2) Kθmax = 27.5º
CCD; rotation images; thick slices scansθmin = 3.3º
Absorption correction: multi-scan(SADABS; Sheldrick, 2001)h = −10→10
Tmin = 0.624, Tmax = 0.86k = −18→15
19593 measured reflectionsl = −18→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Only H-atom displacement parameters refined
wR(F2) = 0.083  w = 1/[σ2(Fo2) + (0.038P)2 + 1.1081P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1844 reflectionsΔρmax = 0.29 e Å3
102 parametersΔρmin = −0.59 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br0.25307 (3)0.16689 (2)0.310767 (19)0.04887 (13)
O0.1470 (3)0.09045 (13)0.01121 (14)0.0533 (5)
H820.08230.1302−0.01350.055 (3)*
N0.4211 (3)0.26649 (17)0.05011 (16)0.0501 (6)
C10.3312 (3)0.20716 (18)0.07017 (16)0.0367 (5)
C20.2128 (3)0.12902 (19)0.09341 (17)0.0364 (5)
H20.12060.15520.13270.055 (3)*
C30.3037 (3)0.05167 (17)0.14759 (16)0.0309 (5)
C40.3299 (3)0.05819 (17)0.24325 (16)0.0330 (5)
C50.4107 (3)−0.01275 (19)0.29246 (18)0.0410 (6)
H50.4253−0.00750.35820.055 (3)*
C60.4697 (4)−0.09138 (18)0.2449 (2)0.0469 (7)
H60.5261−0.14050.27790.055 (3)*
C70.4473 (3)−0.09931 (18)0.1491 (2)0.0443 (6)
H70.4899−0.15310.11640.055 (3)*
C80.3623 (3)−0.02833 (17)0.10115 (18)0.0392 (6)
H80.3442−0.03470.03580.055 (3)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br0.0455 (2)0.0566 (2)0.04446 (19)0.00087 (13)−0.00098 (12)−0.01748 (11)
O0.0627 (14)0.0467 (11)0.0505 (12)0.0086 (9)−0.0308 (10)−0.0072 (9)
N0.0567 (15)0.0477 (14)0.0458 (13)−0.0024 (12)0.0043 (11)0.0100 (11)
C10.0415 (14)0.0352 (13)0.0334 (12)0.0049 (12)0.0002 (11)0.0049 (10)
C20.0362 (13)0.0366 (13)0.0363 (12)0.0030 (11)−0.0045 (10)−0.0020 (11)
C30.0259 (10)0.0319 (11)0.0350 (12)−0.0025 (9)−0.0007 (10)0.0051 (10)
C40.0272 (12)0.0357 (12)0.0361 (12)−0.0071 (10)0.0011 (10)−0.0009 (10)
C50.0396 (14)0.0482 (15)0.0352 (12)−0.0121 (12)−0.0060 (11)0.0110 (11)
C60.0435 (16)0.0375 (14)0.0596 (18)−0.0003 (12)−0.0086 (14)0.0154 (13)
C70.0455 (16)0.0302 (13)0.0573 (17)0.0032 (11)−0.0012 (13)−0.0015 (12)
C80.0427 (14)0.0371 (14)0.0378 (12)−0.0015 (11)0.0004 (11)0.0001 (10)

Geometric parameters (Å, °)

Br—C41.905 (2)C4—C51.380 (3)
O—C21.398 (3)C5—C61.379 (4)
O—H820.8400C5—H50.9500
N—C11.138 (3)C6—C71.386 (4)
C1—C21.489 (4)C6—H60.9500
C2—C31.519 (3)C7—C81.387 (4)
C2—H21.0000C7—H70.9500
C3—C81.385 (3)C8—H80.9500
C3—C41.387 (3)
C2—O—H82109.5C3—C4—Br120.18 (17)
N—C1—C2178.3 (3)C6—C5—C4119.0 (2)
O—C2—C1109.8 (2)C6—C5—H5120.5
O—C2—C3109.6 (2)C4—C5—H5120.5
C1—C2—C3109.2 (2)C5—C6—C7120.5 (2)
O—C2—H2109.4C5—C6—H6119.8
C1—C2—H2109.4C7—C6—H6119.8
C3—C2—H2109.4C6—C7—C8119.7 (2)
C8—C3—C4118.3 (2)C6—C7—H7120.2
C8—C3—C2119.7 (2)C8—C7—H7120.2
C4—C3—C2122.0 (2)C3—C8—C7120.7 (2)
C5—C4—C3121.8 (2)C3—C8—H8119.6
C5—C4—Br118.01 (19)C7—C8—H8119.6
O—C2—C3—C822.9 (3)C3—C4—C5—C61.3 (4)
C1—C2—C3—C8−97.4 (3)Br—C4—C5—C6−178.99 (19)
O—C2—C3—C4−156.8 (2)C4—C5—C6—C7−0.4 (4)
C1—C2—C3—C482.9 (3)C5—C6—C7—C8−1.1 (4)
C8—C3—C4—C5−0.6 (3)C4—C3—C8—C7−1.0 (4)
C2—C3—C4—C5179.1 (2)C2—C3—C8—C7179.3 (2)
C8—C3—C4—Br179.68 (18)C6—C7—C8—C31.8 (4)
C2—C3—C4—Br−0.6 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O—H82···Ni0.842.012.844 (3)170

Symmetry codes: (i) x−1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2526).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Becker, H. G. O., Beckert, R., Domschke, G., Fanghänel, E., Habicher, W. D., Metz, P., Pavel, D. & Schwetlick, K. (2001). Organikum – Organisch-chemisches Grundpraktikum Weinheim: Wiley-VCH.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Flores-Morales, V., Fernández-Zertuche, M. & Ordóñez, M. (2003). Tetrahedron Asymmetry, 14, 2693–2698.
  • Nonius (2004). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2001). SADABS. Version 2. University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography