PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o54.
Published online 2007 December 6. doi:  10.1107/S1600536807061831
PMCID: PMC2915012

l-Nebiviololinium chloride dihydrate

Abstract

The hydro­chloride salt of chiral l-nebivolol {systematic name: (+)−(R,S,S,S)-bis­[2-(6-fluoro-3,4-dihydro-2H-1-benzopyran-2-yl)-2-hydroxy­ethyl]ammonium chloride dihydrate}, C22H26F2NO4 +·Cl·2H2O, was obtained by chiral liquid chromatography as a dihydrate. The pyran rings adopt half-chair conformations. Hydrogen bonds between the cation, anions and water mol­ecules contribute to the formation of layers parallel to the ac plane.

Related literature

For related literature, see: Cini et al. (1990 [triangle]); van Lommen et al. (1990 [triangle]); Peeters et al. (1993 [triangle]); Tuchalski et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o54-scheme1.jpg

Experimental

Crystal data

  • C22H26F2NO4 +·Cl·2H2O
  • M r = 477.92
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o54-efi1.jpg
  • a = 4.8026 (4) Å
  • b = 14.5781 (12) Å
  • c = 33.261 (3) Å
  • V = 2328.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 291 (2) K
  • 0.60 × 0.12 × 0.09 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.865, T max = 0.981
  • 26222 measured reflections
  • 3401 independent reflections
  • 2857 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.113
  • S = 1.05
  • 3401 reflections
  • 301 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.24 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 608 Friedel pairs
  • Flack parameter: −0.04 (12)

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); software used to prepare material for publication: SHELXTL (Bruker, 2001 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061831/hb2656sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061831/hb2656Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

L-Nebivolol is one enantiomer of the active pharmaceutical ingredient DL-nebivolol. DL-Nebivolol is a β-blocker of the third generation exhibiting a unique activity profile (van Lommen,et al., 1990). Here we report the title compound, (I), the hydrochloride salt of L-nebivolol, obtained by chiral liquid chromatography.

The overall shape of the cation in (I) is strongly influenced by the conformation of the bridging C—C—N—C—C chain between the two benzopyran moieties. This conformation is stabilized by two intramolecular N—H···O hydrogen bonds, depicted in Figure 1. Two non-classical C—H···O intramolecular hydrogen bonds align the torsion angles C2—C3—C5—O6 and C2'-C3'-C5'-O6' in a synclinal (sc) arrangement. The length of the bridging chain defined by the distance between the carbon atoms C5 and C5' amounts to 7.434 (2) Å. O6 and O6' are in cis-position. The average C—N, C—C and C—O distances in the title compound (Fig. 1) are in good agreement with those in other nebivolol derivatives (Peeters et al., 1993; Tuchalski et al., 2006).

Figure 2 shows the packing in (I). Like in the other nebivolol isomers the molecular packing of l-nebivolol is directed by classical intermolecular hydrogen bonds. Nine unique hydrogen bonds between nitrogen and hydroxyl groups, nitrogen and water molecules, hydroxyl groups and water molecules, hydroxyl groups and chlorine as well as between water and chlorine can be observed (Table 1). Together, these result in layers propagating in (010).

Experimental

The title compound was synthesized by a subsequent ring-opening addition reaction (Cini et al., 1990) of two different oxiran isomers with benzylamine leading to the individual benzyl-nebivolol isomers endowed with 4 chiral centers. The L-nebivolol isomer was isolated after hydrogenation and preparative chiral chromatography as its corresponding hydrochloride.

Colourless needles of (I) were grown by solvent evaporation from ethanol/ethyl acetate (1:1 v/v) at room temperature. NMR data: 1H NMR (DMSO-d6), δ(p.p.m.): 1.70 (1H, m); 1.77 (1H, m); 1.93 (1H, m); 2.11 (1H, m); 2.79 (4H, m); 3.05 (1H, m); 3.17 (1H, m); 3.22 (1H, m); 3.33 (1H, m); 3.89 (1H, m); 3.99 (1H, m); 3.99 (1H, m); 4.09 (1H, m); 5.75 (1H, d); 5.94 (1H, d); 6.76 (2H, dd); 6.91 (2H, m); 6.94 (2H, m); 8.63 (2H, broad) 13C NMR (DMSO -d6) δ(p.p.m.): 22.1; 22.3; 23.4; 24.0; 49.4; 49.8; 67.3; 67.4; 76.7; 77.0; 113.6 (23.0); 113.6 (23.1); 115.2 (22.5); 115.3 (22.5); 117.3 (8.1); 117.3 (8.1); 123.6 (7.7); 123.7 (7.8); 150.0 (1.4); 150.4 (1.6); 155.8 (235.5); 155.9 (235.5); [αl]29D= - 20.5° (c = 1, THF/water = 4/1) chiral LC: 99.9 area-%

Refinement

The water H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.5Ueq(O).

The other hydrogen atoms were located in difference maps, repositioned with idealized geometry (C—H = 0.93–0.97 Å, N—H = 0.89 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(parent atom).

Figures

Fig. 1.
View of the molecular structure of (I) with 50% probability displacement ellipsoids for the non-hydrogen atoms.
Fig. 2.
View of the layers array of (I), formed via hydrogen-bonding interactions (indicated by green lines).

Crystal data

C22H26F2NO4+·Cl·2H2OF000 = 1008
Mr = 477.92Dx = 1.363 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 120 reflections
a = 4.8026 (4) Åθ = 1.2–25.4º
b = 14.5781 (12) ŵ = 0.22 mm1
c = 33.261 (3) ÅT = 291 (2) K
V = 2328.7 (3) Å3Needle, colourless
Z = 40.60 × 0.12 × 0.09 mm

Data collection

APEX CCD area-detector diffractometer3401 independent reflections
Radiation source: fine-focus sealed tube2857 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.054
T = 292(2) Kθmax = 26.4º
ω–scanθmin = 1.2º
Absorption correction: multi-scan(SADABS; Bruker, 2001)h = −6→6
Tmin = 0.865, Tmax = 0.981k = −18→18
26222 measured reflectionsl = −41→41

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041  w = 1/[σ2(Fo2) + (0.0545P)2 + 0.978P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113(Δ/σ)max = 0.004
S = 1.05Δρmax = 0.33 e Å3
3401 reflectionsΔρmin = −0.24 e Å3
301 parametersExtinction correction: none
6 restraintsAbsolute structure: Flack (1983), xx Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.04 (12)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.7060 (2)0.96561 (9)0.28493 (3)0.0826 (4)
O1W0.2063 (8)1.0846 (2)0.24528 (8)0.0899 (10)
H1A0.348 (7)0.866 (3)0.2722 (19)0.135*
H1B0.348 (8)1.075 (3)0.2618 (13)0.135*
O2W0.2154 (7)0.8243 (2)0.26894 (9)0.0772 (8)
H2A0.064 (6)0.858 (3)0.2719 (18)0.116*
H2B0.191 (10)1.0312 (17)0.2332 (13)0.116*
N10.7326 (6)0.57169 (17)0.33807 (7)0.0461 (7)
H10.84750.56220.31710.069*
H20.58290.60260.32900.069*
C2'0.8776 (7)0.6276 (2)0.36873 (9)0.0435 (8)
H31.02880.59180.38000.052*
H40.74840.64140.39030.052*
C20.6415 (7)0.4814 (2)0.35470 (9)0.0397 (8)
H50.51960.49200.37750.048*
H60.80350.44830.36430.048*
C30.4905 (7)0.4230 (2)0.32411 (9)0.0390 (8)
H70.61690.40920.30180.058*
C3'0.9940 (7)0.7165 (2)0.35241 (9)0.0403 (8)
H80.84980.74780.33670.048*
O40.2600 (5)0.47447 (14)0.30934 (6)0.0449 (5)
H90.17440.44370.29280.067*
O4'1.2211 (5)0.69428 (15)0.32678 (6)0.0508 (6)
H101.28710.74150.31740.076*
C50.3984 (7)0.3337 (2)0.34381 (9)0.0403 (8)
H110.56450.30080.35300.060*
C5'1.0904 (7)0.7793 (2)0.38644 (9)0.0390 (8)
H121.25510.75210.39910.047*
O60.2381 (5)0.36036 (13)0.37856 (6)0.0455 (6)
O6'0.8676 (5)0.78023 (15)0.41512 (6)0.0473 (6)
C70.0810 (7)0.2942 (2)0.39725 (9)0.0421 (8)
C7'0.8967 (7)0.8404 (2)0.44712 (9)0.0411 (8)
C80.0283 (7)0.2085 (2)0.37968 (11)0.0457 (9)
C8'1.0804 (7)0.9139 (2)0.44601 (10)0.0431 (8)
C90.1485 (8)0.1844 (2)0.33954 (11)0.0571 (10)
H130.01170.15080.32390.069*
H140.30970.14520.34320.069*
C9'1.2565 (8)0.9325 (2)0.40927 (9)0.0461 (8)
H151.44950.91830.41520.055*
H161.24510.99710.40250.055*
C100.2340 (9)0.2710 (2)0.31677 (9)0.0506 (9)
H170.34600.25430.29360.061*
H180.06920.30260.30720.061*
C10'1.1607 (7)0.8755 (2)0.37343 (9)0.0455 (8)
H190.99820.90380.36140.055*
H201.30720.87360.35340.055*
C11−0.0325 (8)0.3188 (3)0.43371 (10)0.0527 (9)
H210.00970.37560.44490.063*
C11'0.7255 (8)0.8244 (2)0.47963 (9)0.0499 (9)
H220.60060.77570.47910.060*
C12−0.2092 (9)0.2592 (3)0.45375 (12)0.0668 (11)
H23−0.29080.27530.47810.080*
C12'0.7387 (9)0.8806 (3)0.51317 (10)0.0578 (10)
H240.62420.87070.53530.069*
C13−0.2590 (9)0.1757 (3)0.43632 (13)0.0660 (11)
C13'0.9266 (9)0.9516 (3)0.51263 (10)0.0581 (10)
C14−0.1492 (8)0.1495 (3)0.40030 (13)0.0615 (11)
H25−0.19280.09240.38950.092*
C14'1.0930 (8)0.9700 (3)0.48011 (10)0.0551 (9)
H261.21411.01980.48070.066*
F1−0.4347 (6)0.11636 (19)0.45634 (9)0.1020 (9)
F1'0.9452 (7)1.00610 (18)0.54589 (7)0.0957 (9)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0593 (7)0.1298 (10)0.0587 (6)−0.0099 (7)−0.0044 (5)0.0150 (6)
O1W0.098 (3)0.120 (3)0.0524 (17)0.013 (2)−0.0059 (17)−0.0197 (17)
O2W0.0740 (19)0.095 (2)0.0626 (16)−0.0110 (18)0.0067 (18)0.0175 (16)
N10.0506 (17)0.0464 (15)0.0414 (14)−0.0137 (15)0.0035 (14)−0.0038 (13)
C2'0.0459 (19)0.0432 (19)0.0414 (18)−0.0070 (16)−0.0018 (16)−0.0028 (15)
C20.0390 (18)0.0357 (17)0.0444 (17)−0.0061 (15)0.0004 (15)0.0030 (14)
C30.0357 (18)0.0401 (17)0.0411 (17)0.0007 (16)0.0039 (15)−0.0046 (15)
C3'0.0384 (18)0.0422 (18)0.0403 (17)−0.0039 (16)0.0044 (15)0.0003 (15)
O40.0432 (12)0.0465 (13)0.0450 (12)0.0013 (13)−0.0060 (12)−0.0019 (10)
O4'0.0512 (14)0.0442 (12)0.0569 (13)−0.0016 (12)0.0125 (13)−0.0022 (11)
C50.0404 (18)0.0349 (17)0.0456 (18)0.0003 (15)0.0008 (17)−0.0006 (15)
C5'0.0348 (17)0.0430 (19)0.0393 (17)−0.0010 (15)−0.0008 (15)0.0007 (15)
O60.0562 (14)0.0394 (12)0.0410 (11)−0.0112 (12)0.0060 (12)−0.0027 (10)
O6'0.0437 (13)0.0532 (14)0.0449 (12)−0.0116 (11)0.0076 (11)−0.0069 (11)
C70.0403 (18)0.044 (2)0.0424 (19)−0.0079 (17)−0.0072 (16)0.0112 (16)
C7'0.0400 (19)0.0469 (19)0.0365 (17)0.0051 (17)−0.0033 (16)−0.0046 (15)
C80.0412 (19)0.0370 (18)0.059 (2)−0.0038 (17)−0.0063 (17)0.0082 (17)
C8'0.0386 (19)0.0441 (19)0.0467 (19)0.0081 (17)−0.0071 (16)−0.0029 (16)
C90.060 (3)0.0351 (18)0.076 (3)−0.0089 (18)0.005 (2)−0.0075 (18)
C9'0.0445 (19)0.0416 (18)0.0522 (19)−0.0056 (18)−0.0005 (18)0.0015 (16)
C100.056 (2)0.046 (2)0.0500 (19)−0.008 (2)0.003 (2)−0.0102 (16)
C10'0.049 (2)0.0463 (19)0.0408 (18)−0.0076 (16)−0.0002 (16)0.0044 (15)
C110.058 (2)0.055 (2)0.045 (2)−0.012 (2)0.0019 (19)0.0034 (18)
C11'0.051 (2)0.055 (2)0.0446 (19)0.0013 (19)0.0068 (18)0.0017 (16)
C120.060 (3)0.078 (3)0.062 (2)−0.011 (2)0.007 (2)0.016 (2)
C12'0.058 (2)0.072 (2)0.0435 (19)0.016 (2)0.0081 (19)0.0023 (19)
C130.055 (2)0.060 (2)0.084 (3)−0.020 (2)0.001 (2)0.027 (2)
C13'0.068 (3)0.065 (3)0.041 (2)0.008 (2)−0.001 (2)−0.0143 (19)
C140.054 (2)0.048 (2)0.082 (3)−0.0118 (19)−0.008 (2)0.009 (2)
C14'0.059 (2)0.051 (2)0.056 (2)−0.002 (2)−0.007 (2)−0.0113 (18)
F10.090 (2)0.0920 (18)0.124 (2)−0.0404 (17)0.0217 (17)0.0312 (17)
F1'0.124 (2)0.1009 (19)0.0617 (14)−0.0078 (18)0.0089 (15)−0.0367 (14)

Geometric parameters (Å, °)

O1W—H1B0.89 (4)C7—C81.402 (5)
O1W—H2B0.88 (3)C7'—C11'1.378 (5)
O2W—H1A0.89 (4)C7'—C8'1.388 (5)
O2W—H2A0.92 (5)C8—C141.391 (5)
N1—C2'1.479 (4)C8—C91.496 (5)
N1—C21.493 (4)C8'—C14'1.400 (5)
N1—H10.9000C8'—C9'1.511 (5)
N1—H20.9000C9—C101.528 (5)
C2'—C3'1.512 (4)C9—H130.9700
C2'—H30.9700C9—H140.9700
C2'—H40.9700C9'—C10'1.525 (4)
C2—C31.512 (4)C9'—H150.9700
C2—H50.9700C9'—H160.9700
C2—H60.9700C10—H170.9700
C3—O41.424 (4)C10—H180.9700
C3—C51.524 (4)C10'—H190.9700
C3—H70.9800C10'—H200.9700
C3'—O4'1.422 (4)C11—C121.385 (5)
C3'—C5'1.528 (4)C11—H210.9300
C3'—H80.9800C11'—C12'1.386 (5)
O4—H90.8200C11'—H220.9300
O4'—H100.8200C12—C131.370 (6)
C5—O61.442 (4)C12—H230.9300
C5—C101.506 (5)C12'—C13'1.372 (5)
C5—H110.9800C12'—H240.9300
C5'—O6'1.434 (4)C13—C141.363 (6)
C5'—C10'1.505 (4)C13—F11.379 (4)
C5'—H120.9800C13'—C14'1.371 (5)
O6—C71.373 (4)C13'—F1'1.365 (4)
O6'—C7'1.386 (4)C14—H250.9300
C7—C111.377 (5)C14'—H260.9300
H1B—O1W—H2B102 (4)C14—C8—C7117.1 (3)
H1A—O2W—H2A101 (4)C14—C8—C9122.1 (3)
C2'—N1—C2111.6 (2)C7—C8—C9120.7 (3)
C2'—N1—H1109.3C7'—C8'—C14'117.2 (3)
C2—N1—H1109.3C7'—C8'—C9'121.1 (3)
C2'—N1—H2109.3C14'—C8'—C9'121.7 (3)
C2—N1—H2109.3C8—C9—C10110.6 (3)
H1—N1—H2108.0C8—C9—H13109.5
N1—C2'—C3'113.5 (3)C10—C9—H13109.5
N1—C2'—H3108.9C8—C9—H14109.5
C3'—C2'—H3108.9C10—C9—H14109.5
N1—C2'—H4108.9H13—C9—H14108.1
C3'—C2'—H4108.9C8'—C9'—C10'111.4 (3)
H3—C2'—H4107.7C8'—C9'—H15109.3
N1—C2—C3112.8 (2)C10'—C9'—H15109.3
N1—C2—H5109.0C8'—C9'—H16109.3
C3—C2—H5109.0C10'—C9'—H16109.3
N1—C2—H6109.0H15—C9'—H16108.0
C3—C2—H6109.0C5—C10—C9110.3 (3)
H5—C2—H6107.8C5—C10—H17109.6
O4—C3—C2108.0 (2)C9—C10—H17109.6
O4—C3—C5111.9 (3)C5—C10—H18109.6
C2—C3—C5109.3 (2)C9—C10—H18109.6
O4—C3—H7109.2H17—C10—H18108.1
C2—C3—H7109.2C5'—C10'—C9'110.5 (3)
C5—C3—H7109.2C5'—C10'—H19109.5
O4'—C3'—C2'107.7 (3)C9'—C10'—H19109.5
O4'—C3'—C5'110.4 (3)C5'—C10'—H20109.5
C2'—C3'—C5'111.1 (2)C9'—C10'—H20109.5
O4'—C3'—H8109.2H19—C10'—H20108.1
C2'—C3'—H8109.2C7—C11—C12120.2 (3)
C5'—C3'—H8109.2C7—C11—H21119.9
C3—O4—H9109.5C12—C11—H21119.9
C3'—O4'—H10109.5C7'—C11'—C12'120.3 (4)
O6—C5—C10111.3 (3)C7'—C11'—H22119.9
O6—C5—C3105.6 (2)C12'—C11'—H22119.9
C10—C5—C3114.5 (3)C13—C12—C11117.5 (4)
O6—C5—H11108.4C13—C12—H23121.3
C10—C5—H11108.4C11—C12—H23121.3
C3—C5—H11108.4C13'—C12'—C11'117.7 (4)
O6'—C5'—C10'110.5 (3)C13'—C12'—H24121.1
O6'—C5'—C3'105.8 (2)C11'—C12'—H24121.1
C10'—C5'—C3'114.4 (3)C14—C13—C12123.5 (4)
O6'—C5'—H12108.7C14—C13—F1119.1 (4)
C10'—C5'—H12108.7C12—C13—F1117.4 (4)
C3'—C5'—H12108.7C14'—C13'—F1'119.1 (4)
C7—O6—C5117.8 (2)C14'—C13'—C12'122.7 (3)
C7'—O6'—C5'116.2 (2)F1'—C13'—C12'118.1 (3)
O6—C7—C11115.7 (3)C13—C14—C8119.9 (4)
O6—C7—C8122.4 (3)C13—C14—H25120.1
C11—C7—C8121.8 (3)C8—C14—H25120.1
C11'—C7'—O6'115.8 (3)C13'—C14'—C8'120.0 (4)
C11'—C7'—C8'122.0 (3)C13'—C14'—H26120.0
O6'—C7'—C8'122.1 (3)C8'—C14'—H26120.0
C2—N1—C2'—C3'175.4 (3)O6'—C7'—C8'—C9'0.8 (5)
C2'—N1—C2—C3179.6 (3)C14—C8—C9—C10157.4 (4)
N1—C2—C3—O4−56.6 (3)C7—C8—C9—C10−19.6 (5)
N1—C2—C3—C5−178.5 (3)C7'—C8'—C9'—C10'11.8 (4)
N1—C2'—C3'—O4'−70.0 (4)C14'—C8'—C9'—C10'−167.6 (3)
N1—C2'—C3'—C5'169.0 (3)O6—C5—C10—C9−59.5 (4)
O4—C3—C5—O6−64.8 (3)C3—C5—C10—C9−179.1 (3)
C2—C3—C5—O654.8 (3)C8—C9—C10—C547.3 (4)
O4—C3—C5—C1058.0 (4)O6'—C5'—C10'—C9'61.2 (4)
C2—C3—C5—C10177.5 (3)C3'—C5'—C10'—C9'−179.6 (3)
O4'—C3'—C5'—O6'−167.0 (2)C8'—C9'—C10'—C5'−41.4 (4)
C2'—C3'—C5'—O6'−47.6 (3)O6—C7—C11—C12175.8 (3)
O4'—C3'—C5'—C10'71.1 (4)C8—C7—C11—C12−1.5 (5)
C2'—C3'—C5'—C10'−169.5 (3)O6'—C7'—C11'—C12'179.9 (3)
C10—C5—O6—C741.9 (4)C8'—C7'—C11'—C12'−2.0 (5)
C3—C5—O6—C7166.7 (3)C7—C11—C12—C131.5 (6)
C10'—C5'—O6'—C7'−49.5 (4)C7'—C11'—C12'—C13'−0.1 (5)
C3'—C5'—O6'—C7'−173.9 (2)C11—C12—C13—C14−1.4 (7)
C5—O6—C7—C11170.0 (3)C11—C12—C13—F1179.9 (3)
C5—O6—C7—C8−12.7 (4)C11'—C12'—C13'—C14'1.9 (6)
C5'—O6'—C7'—C11'−163.3 (3)C11'—C12'—C13'—F1'−178.6 (3)
C5'—O6'—C7'—C8'18.7 (4)C12—C13—C14—C81.3 (7)
O6—C7—C8—C14−175.8 (3)F1—C13—C14—C8180.0 (3)
C11—C7—C8—C141.3 (5)C7—C8—C14—C13−1.2 (5)
O6—C7—C8—C91.4 (5)C9—C8—C14—C13−178.3 (4)
C11—C7—C8—C9178.5 (3)F1'—C13'—C14'—C8'178.8 (3)
C11'—C7'—C8'—C14'2.2 (5)C12'—C13'—C14'—C8'−1.7 (6)
O6'—C7'—C8'—C14'−179.8 (3)C7'—C8'—C14'—C13'−0.4 (5)
C11'—C7'—C8'—C9'−177.2 (3)C9'—C8'—C14'—C13'179.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1Wi0.902.122.794 (3)131
N1—H1···O4ii0.902.373.056 (4)133
N1—H2···O4'iii0.902.193.061 (4)162
O4—H9···Cl1i0.822.673.142 (2)118
O4'—H10···O2Wii0.822.042.701 (4)137
O1W—H1B···Cl10.89 (4)2.47 (4)3.242 (2)146 (4)
O1W—H2B···N1iv0.88 (3)2.47 (4)2.794 (3)102 (3)
O2W—H1A···Cl10.89 (4)2.29 (4)3.175 (3)175 (3)
O2W—H2A···Cl1iii0.88 (4)2.37 (4)3.242 (3)171 (3)
C2'—H4···O6'0.972.262.708 (4)107
C2—H5···O60.972.352.738 (4)103
C2—H6···O6ii0.972.493.457 (4)172
C14'—H26···F1v0.932.343.213 (5)156

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1, y, z; (iii) x−1, y, z; (iv) −x+1, y+1/2, −z+1/2; (v) x+2, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2656).

References

  • Bruker (2001). SMART, SAINT, SADABS and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Cini, M., Crotti, P. & Macchia, F. (1990). Tetrahedron Lett.31, 4661–4664.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Lommen, G. R. E. van, de Bruyn, M. F. L. & Schroven, M. F. J. (1990). J. Pharm. Belg.45, 355–360. [PubMed]
  • Peeters, O. M., Blaton, N. M. & De Ranter, C. J. (1993). Acta Cryst. C49, 2154–2157.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Tuchalski, G., Emmerling, F., Groger, K., Hansicke, A., Nagel, T. & Reck, G. (2006). J. Mol. Struct.800, 28–44.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography