PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o53.
Published online 2007 December 6. doi:  10.1107/S160053680706059X
PMCID: PMC2915011

(E)-Methyl 3-(2-nitro­benzyl­idene)dithio­carbazate

Abstract

The asymmetric unit of the title compound, C9H9N3O2S2, contains two independent mol­ecules, A and B, with similar bond dimensions. In both mol­ecules, the nitro group is tilted with respect to the aromatic ring [dihedral angles 32.0 (1)° in mol­ecule A and 34.0 (1)° in mol­ecule B]. The dithio­carbazate unit is nearly coplanar with the aromatic ring in both mol­ecules. For mol­ecule B, pairs of mol­ecules are linked by N—H(...)O and C—H(...)O hydrogen bonds about a centre of symmetry to form a dimer, whereas mol­ecules A are not involved in hydrogen bonding in the crystal structure.

Related literature

For general background, see: Okabe et al. (1993 [triangle]); Hu et al. (2001 [triangle]). For related structures, see: Chen et al. (2007 [triangle]); Shan & Zhang, 2006 [triangle]; Zhang et al. 2005 [triangle]). For synthesis, see: Hu et al. (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o53-scheme1.jpg

Experimental

Crystal data

  • C9H9N3O2S2
  • M r = 255.31
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o53-efi1.jpg
  • a = 7.5261 (12) Å
  • b = 10.7128 (16) Å
  • c = 14.5343 (17) Å
  • α = 78.588 (6)°
  • β = 87.095 (5)°
  • γ = 84.612 (6)°
  • V = 1143.0 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 291 (2) K
  • 0.36 × 0.30 × 0.16 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.795, T max = 0.930
  • 11206 measured reflections
  • 5127 independent reflections
  • 3773 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.116
  • S = 1.10
  • 5127 reflections
  • 291 parameters
  • H-atom parameters constrained
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998 [triangle]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SIR92 (Altomare et al., 1993 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706059X/ng2380sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706059X/ng2380Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the Natural Science Foundation of Zhejiang Province of China (grant No. M203027).

supplementary crystallographic information

Comment

Hydrazone and its derivatives have attracted our much attention because of their application in biological field (Okabe et al., 1993). As part of our ongoing investigation on anti-cancer compounds (Hu et al., 2001), the title compound has been prepared and its structure is presented here.

The asymmetric unit of the title compound contains two crystallographic independent molecules, A (C1-containing molecule) and B (C11-containing molecule), with the similar structure (Fig. 1). In the two molecules, the nitro groups are tilted with respect to the connected benzene rings by dihedral angles of 31.96 (11) and 33.96 (11)°, respectively; while dithiocarbazate moieties are nearly co-planar with the benzene rings, dihedral angles being 3.00 (6) and 4.03 (6)°, respectively. The centro-symmetry related B molecules are linked by N—H···O hydrogen bonding to form the supramolecular dimer (Table 2). Whereas the A molecules are not involved in hydrogen bonding in the crystal structure. The N2?C7 and N12?C17 bond distances (Table 1) indicate the typical N?C double bonds. Around the N?C double bonds, both molecules A and B exhibit the E configuration, similar to those found in related compounds (Chen et al., 2007; Shan & Zhang, 2006; Zhang et al., 2005).

Experimental

Methyl dithiocarbazate was synthesized in the manner reported previously (Hu et al., 2001). Methyl dithiocarbazate (1.24 g, 10 mmol) and 2-nitrobenzaldehyde (1.51 g, 10 mmol) were dissolved in ethanol (10 ml) and refluxed for 4 h. Fine yellow crystals appeared on cooling. They were separated and washed with cold water three times. Single crystals of the title compound were obtained by recrystallization from an absolute ethanol solution.

Refinement

Methyl H atoms were placed in calculated positions with C—H = 0.96 Å and torsion angle was refined to fit electron density, Uiso(H) = 1.5Ueq(C). Other H atoms were placed in calculated positions with C—H = 0.97 and N—H = 0.86 Å, and refined in the riding mode, with Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structure of the title compound with 40% probability displacement ellipsoids (arbitrary spheres for H atoms).

Crystal data

C9H9N3O2S2Z = 4
Mr = 255.31F000 = 528
Triclinic, P1Dx = 1.484 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.5261 (12) ÅCell parameters from 8768 reflections
b = 10.7128 (16) Åθ = 3.5–25.2º
c = 14.5343 (17) ŵ = 0.45 mm1
α = 78.588 (6)ºT = 291 (2) K
β = 87.095 (5)ºPrism, yellow
γ = 84.612 (6)º0.36 × 0.30 × 0.16 mm
V = 1143.0 (3) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer5127 independent reflections
Radiation source: fine-focus sealed tube3773 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 27.4º
T = 294(2) Kθmin = 3.0º
ω scansh = −9→9
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)k = −13→13
Tmin = 0.795, Tmax = 0.930l = −18→18
11206 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.116  w = 1/[σ2(Fo2) + (0.0526P)2 + 0.2566P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.002
5127 reflectionsΔρmax = 0.32 e Å3
291 parametersΔρmin = −0.31 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.10244 (10)0.28477 (6)0.50066 (5)0.0686 (2)
S2−0.04064 (8)0.25046 (5)0.29873 (4)0.05480 (17)
S110.67348 (9)0.86939 (5)0.15976 (5)0.06155 (19)
S120.62739 (8)0.64462 (5)0.06773 (4)0.05198 (16)
N10.1634 (3)0.88846 (18)0.18824 (14)0.0555 (5)
N20.0369 (2)0.50343 (16)0.26593 (12)0.0470 (4)
N3−0.0124 (3)0.46023 (17)0.35805 (13)0.0545 (5)
H3N−0.01850.51140.39700.065*
N110.3762 (3)0.30552 (17)0.50958 (12)0.0499 (4)
N120.5421 (2)0.52269 (15)0.24812 (12)0.0420 (4)
N130.5836 (3)0.64538 (16)0.24503 (12)0.0477 (4)
H13N0.58230.67450.29610.057*
O10.1188 (3)1.00252 (16)0.16247 (14)0.0801 (6)
O20.2133 (3)0.84171 (18)0.26726 (13)0.0751 (5)
O110.4082 (3)0.23524 (18)0.58419 (12)0.0875 (7)
O120.3194 (3)0.41716 (15)0.50380 (12)0.0646 (5)
C10.1201 (3)0.67717 (18)0.14835 (14)0.0404 (4)
C20.1581 (3)0.80514 (18)0.12003 (14)0.0427 (4)
C30.1920 (3)0.8603 (2)0.02687 (15)0.0496 (5)
H30.21250.94630.01030.060*
C40.1951 (3)0.7869 (2)−0.04046 (16)0.0535 (5)
H40.21870.8226−0.10310.064*
C50.1629 (3)0.6593 (2)−0.01493 (16)0.0532 (5)
H50.16680.6091−0.06050.064*
C60.1251 (3)0.6061 (2)0.07770 (16)0.0494 (5)
H60.10250.52050.09330.059*
C70.0663 (3)0.6209 (2)0.24519 (15)0.0480 (5)
H70.05390.67080.29110.058*
C8−0.0516 (3)0.3381 (2)0.38814 (16)0.0504 (5)
C9−0.0977 (4)0.0963 (2)0.3612 (2)0.0689 (7)
H9A−0.01820.06640.41210.103*
H9B−0.08690.03690.31930.103*
H9C−0.21830.10320.38570.103*
C110.4580 (3)0.32678 (17)0.33941 (13)0.0382 (4)
C120.4033 (3)0.25252 (18)0.42419 (13)0.0390 (4)
C130.3699 (3)0.12543 (18)0.43353 (15)0.0453 (5)
H130.33410.07890.49140.054*
C140.3904 (3)0.06946 (19)0.35602 (16)0.0514 (5)
H140.3677−0.01550.36080.062*
C150.4450 (3)0.1400 (2)0.27100 (16)0.0511 (5)
H150.45850.10200.21850.061*
C160.4798 (3)0.2658 (2)0.26259 (15)0.0451 (5)
H160.51860.31090.20480.054*
C170.5029 (3)0.45918 (19)0.32906 (14)0.0454 (5)
H170.50280.49670.38160.054*
C180.6263 (3)0.72055 (18)0.16279 (14)0.0427 (5)
C190.6919 (4)0.7682 (3)−0.02735 (17)0.0663 (7)
H19A0.59850.8366−0.03680.099*
H19B0.71190.7340−0.08360.099*
H19C0.79960.8002−0.01240.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0862 (5)0.0596 (4)0.0520 (3)−0.0072 (3)0.0147 (3)0.0049 (3)
S20.0588 (3)0.0460 (3)0.0564 (3)−0.0097 (3)0.0041 (3)−0.0011 (2)
S110.0834 (4)0.0354 (3)0.0657 (4)−0.0174 (3)0.0141 (3)−0.0080 (3)
S120.0637 (4)0.0490 (3)0.0444 (3)−0.0098 (3)−0.0008 (3)−0.0096 (2)
N10.0720 (13)0.0434 (10)0.0562 (12)−0.0216 (9)0.0085 (10)−0.0167 (9)
N20.0487 (10)0.0401 (9)0.0482 (10)−0.0041 (8)0.0011 (8)0.0004 (7)
N30.0682 (12)0.0446 (10)0.0471 (10)−0.0055 (9)0.0062 (9)−0.0023 (8)
N110.0681 (12)0.0432 (10)0.0405 (9)−0.0102 (9)0.0001 (9)−0.0114 (8)
N120.0511 (10)0.0315 (8)0.0441 (9)−0.0073 (7)−0.0019 (8)−0.0068 (7)
N130.0674 (12)0.0347 (8)0.0425 (9)−0.0142 (8)0.0037 (8)−0.0078 (7)
O10.1226 (17)0.0372 (9)0.0830 (13)−0.0105 (10)0.0093 (12)−0.0194 (9)
O20.1115 (16)0.0655 (11)0.0557 (11)−0.0289 (11)−0.0109 (10)−0.0178 (9)
O110.164 (2)0.0608 (11)0.0367 (9)−0.0046 (12)−0.0097 (11)−0.0065 (8)
O120.0928 (13)0.0452 (9)0.0593 (10)−0.0055 (9)0.0089 (9)−0.0219 (7)
C10.0378 (10)0.0347 (9)0.0481 (11)−0.0036 (8)−0.0020 (8)−0.0063 (8)
C20.0452 (11)0.0369 (10)0.0475 (11)−0.0076 (8)0.0004 (9)−0.0105 (8)
C30.0563 (13)0.0400 (11)0.0509 (12)−0.0102 (9)0.0048 (10)−0.0038 (9)
C40.0555 (13)0.0572 (13)0.0467 (12)−0.0055 (11)0.0023 (10)−0.0085 (10)
C50.0584 (13)0.0542 (13)0.0519 (13)−0.0078 (11)−0.0006 (11)−0.0206 (10)
C60.0528 (12)0.0370 (10)0.0610 (13)−0.0088 (9)−0.0024 (10)−0.0139 (10)
C70.0537 (12)0.0409 (11)0.0491 (12)−0.0083 (9)−0.0005 (10)−0.0067 (9)
C80.0464 (11)0.0455 (11)0.0530 (12)−0.0008 (9)0.0043 (10)0.0027 (10)
C90.0703 (16)0.0472 (13)0.0838 (19)−0.0125 (12)0.0040 (14)0.0016 (12)
C110.0435 (10)0.0327 (9)0.0396 (10)−0.0055 (8)−0.0058 (8)−0.0079 (8)
C120.0455 (11)0.0346 (9)0.0385 (10)−0.0037 (8)−0.0069 (8)−0.0096 (8)
C130.0546 (12)0.0329 (10)0.0476 (11)−0.0077 (9)−0.0073 (10)−0.0026 (8)
C140.0628 (14)0.0309 (10)0.0635 (14)−0.0070 (9)−0.0164 (11)−0.0113 (9)
C150.0617 (14)0.0444 (11)0.0527 (12)0.0000 (10)−0.0101 (10)−0.0230 (10)
C160.0522 (12)0.0437 (11)0.0417 (10)−0.0062 (9)−0.0022 (9)−0.0129 (9)
C170.0615 (13)0.0379 (10)0.0398 (10)−0.0119 (9)−0.0023 (9)−0.0110 (8)
C180.0462 (11)0.0357 (10)0.0457 (11)−0.0050 (8)0.0023 (9)−0.0072 (8)
C190.0759 (17)0.0732 (17)0.0450 (12)−0.0097 (14)0.0031 (12)0.0006 (11)

Geometric parameters (Å, °)

S1—C81.660 (2)C3—H30.9300
S2—C81.742 (3)C4—C51.385 (3)
S2—C91.800 (2)C4—H40.9300
S11—C181.657 (2)C5—C61.381 (3)
S12—C181.736 (2)C5—H50.9300
S12—C191.797 (2)C6—H60.9300
N1—O21.221 (3)C7—H70.9300
N1—O11.225 (2)C9—H9A0.9600
N1—C21.464 (3)C9—H9B0.9600
N2—C71.272 (3)C9—H9C0.9600
N2—N31.372 (2)C11—C121.394 (3)
N3—C81.350 (3)C11—C161.396 (3)
N3—H3N0.8600C11—C171.466 (3)
N11—O111.212 (2)C12—C131.387 (3)
N11—O121.220 (2)C13—C141.373 (3)
N11—C121.461 (3)C13—H130.9300
N12—C171.273 (3)C14—C151.380 (3)
N12—N131.371 (2)C14—H140.9300
N13—C181.345 (2)C15—C161.378 (3)
N13—H13N0.8600C15—H150.9300
C1—C61.391 (3)C16—H160.9300
C1—C21.403 (3)C17—H170.9300
C1—C71.470 (3)C19—H19A0.9600
C2—C31.387 (3)C19—H19B0.9600
C3—C41.369 (3)C19—H19C0.9600
C8—S2—C9101.93 (12)N3—C8—S2113.24 (16)
C18—S12—C19101.57 (11)S1—C8—S2126.39 (13)
O2—N1—O1123.3 (2)S2—C9—H9A109.5
O2—N1—C2118.83 (19)S2—C9—H9B109.5
O1—N1—C2117.9 (2)H9A—C9—H9B109.5
C7—N2—N3115.10 (19)S2—C9—H9C109.5
C8—N3—N2120.7 (2)H9A—C9—H9C109.5
C8—N3—H3N119.7H9B—C9—H9C109.5
N2—N3—H3N119.7C12—C11—C16116.26 (17)
O11—N11—O12122.41 (19)C12—C11—C17123.88 (18)
O11—N11—C12118.20 (18)C16—C11—C17119.74 (18)
O12—N11—C12119.38 (17)C13—C12—C11123.03 (19)
C17—N12—N13115.97 (17)C13—C12—N11115.63 (18)
C18—N13—N12120.58 (17)C11—C12—N11121.34 (17)
C18—N13—H13N119.7C14—C13—C12118.95 (19)
N12—N13—H13N119.7C14—C13—H13120.5
C6—C1—C2116.07 (19)C12—C13—H13120.5
C6—C1—C7120.58 (18)C13—C14—C15119.60 (19)
C2—C1—C7123.24 (19)C13—C14—H14120.2
C3—C2—C1122.61 (19)C15—C14—H14120.2
C3—C2—N1116.12 (17)C16—C15—C14121.1 (2)
C1—C2—N1121.27 (18)C16—C15—H15119.5
C4—C3—C2119.33 (19)C14—C15—H15119.5
C4—C3—H3120.3C15—C16—C11121.1 (2)
C2—C3—H3120.3C15—C16—H16119.5
C3—C4—C5119.7 (2)C11—C16—H16119.5
C3—C4—H4120.1N12—C17—C11119.89 (18)
C5—C4—H4120.1N12—C17—H17120.1
C6—C5—C4120.4 (2)C11—C17—H17120.1
C6—C5—H5119.8N13—C18—S11120.14 (16)
C4—C5—H5119.8N13—C18—S12113.32 (14)
C5—C6—C1121.75 (19)S11—C18—S12126.54 (12)
C5—C6—H6119.1S12—C19—H19A109.5
C1—C6—H6119.1S12—C19—H19B109.5
N2—C7—C1119.6 (2)H19A—C19—H19B109.5
N2—C7—H7120.2S12—C19—H19C109.5
C1—C7—H7120.2H19A—C19—H19C109.5
N3—C8—S1120.37 (19)H19B—C19—H19C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N13—H13N···O11i0.862.163.014 (3)174
C17—H17···O12i0.932.553.373 (3)148

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2380).

References

  • Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  • Chen, Z.-Y., Wu, G.-Q., Jiang, F.-X., Tian, Y.-L. & Shan, S. (2007). Acta Cryst. E63, o1919–o1920.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hu, W., Sun, N. & Yang, Z. (2001). Chem. J. Chin. Univ.22, 2014–2017.
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Version 3.00. Rigaku/MSC, The Woodlands, Texas, USA.
  • Shan, S. & Zhang, Y.-L. (2006). Acta Cryst. E62, o2051–o2052.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Zhang, Y.-L., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o1173–o1175.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography