PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o50.
Published online 2007 December 6. doi:  10.1107/S1600536807062344
PMCID: PMC2915008

2,3,4-Triacet­oxy-1-[5-(1,2,3,4-tetra­acetoxy­butyl)pyrazin-2-yl]butyl acetate

Abstract

The title compound, C28H36N2O16, was obtained unintentionally in an attempt to synthesize 1,3,4,6-tetra-O-acetyl-2-azido-2-de­oxy-d-mannopyran­ose. The crystal packing utilizes methyl–acet­oxy C—H(...)O and meth­yl–pyrazine C—H(...)N hydrogen bonding.

Related literature

For general background, see: Vasella et al. (1991 [triangle]); Alper et al. (1996 [triangle]). For related literature, see: Bovin et al. (1981 [triangle]); Paulsen & Stenzel (1978 [triangle]); Paulsen et al. (1985 [triangle]); Pavliak & Kovac (1991 [triangle]). For related structures, see: Klein et al. (1999 [triangle]); Myers et al. (2000 [triangle]), found in a search of the Cambridge Structural Database (Version 5.28; Allen; 2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o50-scheme1.jpg

Experimental

Crystal data

  • C28H36N2O16
  • M r = 656.59
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o50-efi1.jpg
  • a = 5.6931 (8) Å
  • b = 9.9132 (15) Å
  • c = 15.5048 (11) Å
  • α = 81.344 (2)°
  • β = 80.635 (2)°
  • γ = 73.986 (2)°
  • V = 824.71 (18) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 159 (2) K
  • 0.72 × 0.24 × 0.11 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 7120 measured reflections
  • 3304 independent reflections
  • 2954 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.103
  • S = 1.11
  • 3304 reflections
  • 424 parameters
  • 3 restraints
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062344/sj2446sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062344/sj2446Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank Professor Ward T. Robinson and Dr J. Wikaira of the University of Canterbury for their assistance.

supplementary crystallographic information

Comment

We were attempting to establish suitable process routes towards 2-azido-2-deoxy-D-manno- and -D-glucopyranoses utilizing diazo-transfer chemistry as described in the literature (Vasella et al., 1991; Alper et al., 1996). These monosaccharides have been described in the literature as existing in the gum state (Paulsen & Stenzel, 1978; Paulsen et al., 1985). In order to obtain crystalline materials, the acetate derivatives of these sugars were targeted. Both anomers of 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-D-glucopyranose have been reported as crystalline (Paulsen & Stenzel, 1978; Paulsen et al., 1985, Pavliak & Kovac, 1991; Bovin et al., 1981) as has 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α-D-mannopyranose (Paulsen et al., 1985; Bovin et al., 1981). Although 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α- and –β-D-mannopyranoses were produced, about one third of the product mixture was the title compound which preferentially crystallized from ethyl acetate/hexanes.

There is only one other pyrazine derivative reported (Allen, 2002) in the CSD (JOQQAH: 2,3-bis(1-Phenyliminoethyl)pyrazine, Klein et al., 1999), and one related piperazine (XERGAC, Myers et al., 2000). Crystal packing is provided through (methyl)C—H···O (acetoxy) and C—H···N (pyrazine) hydrogen bonding (Table 1).

Experimental

Aqueous mannosamine hydrochloride was treated with stoichiometric potassium carbonate and subsequently with a solution of excess triflic azide (trifluromethanesulfonyl azide) in dichloromethane, in the presence of a catalytic amount (1 mol%) of copper(II) sulfate. Methanol was utilized as required to ensure homogeneity of the reaction mixture. Once all the starting material had been consumed, the mixture was concentrated to a syrup and then subjected to per-acetylation by dissolution in pyridine and treatment with excess acetic anhydride in the presence of catalytic 4-(N,N-dimethylamino)pyridine. The mixture was concentrated to a brown syrup, dissolved in ethyl acetate and passed through a plug of silica gel. Concentration again afforded a brown syrup which appeared to contain a mixture of compounds, two of which were identified (by NMR comparison with authentic samples) as being the desired 1,3,4,6-tetra-O-acetyl-2-azido-2-deoxy-α- and –β-D-mannopyranoses. Approximately one third of the product mixture was the title compound which preferentially crystallized during an attempted crystallization from ethyl acetate/hexanes. Suitable crystals were grown from ethyl acetate solution by addition of small amounts of hexanes until turbity was observed, heated to a clear solution; crystals obtained on cooling were washed with hexanes.

Refinement

In the absence of significant anomalous sattering, the values of the Flack [(1983). Acta Cryst. A39, 876–881] parameter were indeterminate [Flack & Bernardinelli (2000) J. Appl. Cryst. 33, 1143–1148]. Accordingly, the Friedel-equivalent reflections were merged prior to the final refinements. All H atoms were constrained to their expected geometries (C—H 0.99, 0.98 Å). and refined with Uiso 1.2,1.5 times that of the Ueq of their carrier atoms.

Figures

Fig. 1.
The structure of (I) with 30% probabilility ellipsoids (ORTEP-3; Farrugia, 1997).

Crystal data

C28H36N2O16Z = 1
Mr = 656.59F000 = 346
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: P 1Mo Kα radiation λ = 0.71073 Å
a = 5.6931 (8) ÅCell parameters from 5104 reflections
b = 9.9132 (15) Åθ = 4.4–26.4º
c = 15.5048 (11) ŵ = 0.11 mm1
α = 81.344 (2)ºT = 159 (2) K
β = 80.635 (2)ºNeedle, colorless
γ = 73.986 (2)º0.72 × 0.24 × 0.11 mm
V = 824.71 (18) Å3

Data collection

Siemens SMART CCD area-detector diffractometer3304 independent reflections
Radiation source: fine-focus sealed tube2954 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
Detector resolution: 8.192 pixels mm-1θmax = 26.4º
T = 159(2) Kθmin = 2.2º
[var phi] and ω scansh = −3→7
Absorption correction: nonek = −12→12
7120 measured reflectionsl = −19→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.103  w = 1/[σ2(Fo2) + (0.0468P)2 + 0.2195P] where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.009
3304 reflectionsΔρmax = 0.18 e Å3
424 parametersΔρmin = −0.19 e Å3
3 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1773 (4)0.7258 (2)0.61777 (15)0.0260 (5)
O20.3590 (5)0.9030 (3)0.5790 (3)0.0582 (10)
O30.2283 (4)0.4418 (2)0.70327 (15)0.0253 (5)
O40.5514 (5)0.2533 (3)0.6832 (2)0.0477 (8)
O50.4938 (4)0.4054 (3)0.88213 (16)0.0324 (6)
O60.3058 (6)0.2322 (4)0.9229 (3)0.0688 (11)
O70.4371 (4)0.6945 (2)0.79743 (16)0.0275 (5)
O80.1083 (5)0.8765 (3)0.8170 (3)0.0589 (10)
O90.6049 (4)0.2219 (2)0.33102 (15)0.0260 (5)
O100.9351 (5)0.0465 (3)0.3595 (2)0.0520 (8)
O110.4486 (4)0.5073 (2)0.24872 (15)0.0256 (5)
O120.5623 (5)0.7043 (3)0.2567 (2)0.0472 (8)
O130.8382 (4)0.5509 (3)0.06940 (16)0.0310 (6)
O140.5172 (6)0.7186 (4)0.0242 (3)0.0676 (11)
O150.9951 (4)0.2621 (2)0.15420 (16)0.0280 (5)
O160.8672 (5)0.0803 (3)0.1278 (3)0.0581 (9)
N10.3344 (5)0.5037 (3)0.51401 (19)0.0284 (7)
N40.8257 (5)0.4504 (3)0.43623 (19)0.0264 (6)
C10.4152 (5)0.6276 (4)0.6262 (2)0.0230 (7)
H10.53630.68140.63130.028*
C20.5011 (5)0.5497 (3)0.5451 (2)0.0229 (7)
C30.7430 (6)0.5242 (4)0.5062 (2)0.0256 (7)
H30.85500.55990.52960.031*
C40.1747 (7)0.8635 (4)0.5934 (2)0.0313 (8)
C50.6607 (5)0.4030 (3)0.4065 (2)0.0221 (7)
C60.4154 (6)0.4294 (4)0.4455 (2)0.0292 (8)
H60.30340.39320.42250.035*
C7−0.0781 (7)0.9536 (4)0.5866 (3)0.0410 (9)
H7A−0.14031.00110.63990.061*
H7B−0.18580.89480.58010.061*
H7C−0.07571.02440.53530.061*
C80.3913 (6)0.5271 (4)0.7099 (2)0.0241 (7)
H80.55760.46420.71970.029*
C90.3341 (6)0.3066 (4)0.6861 (2)0.0315 (8)
C100.1456 (7)0.2369 (4)0.6714 (3)0.0432 (10)
H10A0.22760.14910.64530.065*
H10B0.03560.30020.63150.065*
H10C0.04940.21550.72780.065*
C110.2789 (6)0.6045 (4)0.7911 (2)0.0256 (7)
H110.11080.66520.78160.031*
C120.2596 (6)0.5074 (4)0.8747 (2)0.0317 (8)
H12A0.21320.56270.92580.038*
H12B0.13050.45810.87430.038*
C130.4913 (7)0.2697 (4)0.9063 (2)0.0343 (9)
C140.7445 (8)0.1760 (4)0.9068 (3)0.0423 (10)
H14A0.75980.12070.96450.064*
H14B0.86370.23350.89480.064*
H14C0.77710.11200.86130.064*
C150.3246 (6)0.8303 (4)0.8119 (2)0.0294 (8)
C160.5035 (8)0.9104 (5)0.8197 (3)0.0423 (10)
H16A0.47440.99780.77940.063*
H16B0.67150.85290.80480.063*
H16C0.48280.93360.88020.063*
C170.7464 (5)0.3247 (4)0.3258 (2)0.0241 (7)
H170.92550.27530.32420.029*
C180.7229 (6)0.0834 (4)0.3507 (2)0.0280 (8)
C190.5532 (7)−0.0086 (4)0.3588 (3)0.0428 (10)
H19A0.6211−0.08180.31890.064*
H19B0.39230.04830.34330.064*
H19C0.5341−0.05310.41940.064*
C200.7033 (5)0.4248 (3)0.2418 (2)0.0226 (7)
H200.81460.48940.23310.027*
C210.4017 (6)0.6466 (4)0.2599 (2)0.0293 (8)
C220.1323 (7)0.7117 (5)0.2744 (3)0.0479 (11)
H22A0.10150.81480.26730.072*
H22B0.06610.68010.33410.072*
H22C0.05160.68320.23160.072*
C230.7427 (6)0.3479 (4)0.1605 (2)0.0258 (7)
H230.62900.28470.16940.024 (9)*
C240.7002 (7)0.4464 (4)0.0770 (2)0.0313 (8)
H24A0.75330.39180.02560.038*
H24B0.52250.49380.07790.038*
C250.7234 (7)0.6849 (4)0.0426 (3)0.0349 (9)
C260.8816 (7)0.7823 (4)0.0403 (3)0.0421 (10)
H26A0.87920.8427−0.01590.063*
H26B1.05090.72730.04660.063*
H26C0.81910.84120.08870.063*
C271.0321 (7)0.1277 (4)0.1357 (2)0.0303 (8)
C281.2961 (7)0.0510 (4)0.1289 (3)0.0407 (9)
H28A1.34110.01390.18790.061*
H28B1.39610.11570.10100.061*
H28C1.3260−0.02740.09340.061*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0195 (10)0.0230 (13)0.0343 (13)−0.0038 (9)−0.0021 (9)−0.0040 (10)
O20.0329 (15)0.0335 (18)0.105 (3)−0.0122 (13)−0.0085 (16)0.0092 (17)
O30.0231 (11)0.0209 (12)0.0316 (13)−0.0063 (9)0.0003 (9)−0.0051 (10)
O40.0324 (15)0.0315 (16)0.082 (2)0.0007 (11)−0.0141 (14)−0.0234 (15)
O50.0338 (13)0.0276 (14)0.0350 (14)−0.0075 (10)−0.0045 (10)−0.0021 (11)
O60.052 (2)0.0374 (19)0.120 (3)−0.0234 (16)−0.018 (2)0.011 (2)
O70.0260 (11)0.0253 (13)0.0326 (13)−0.0041 (9)−0.0035 (9)−0.0125 (10)
O80.0356 (17)0.0365 (19)0.107 (3)−0.0002 (13)−0.0094 (16)−0.0326 (19)
O90.0229 (11)0.0236 (13)0.0331 (13)−0.0074 (9)−0.0047 (9)−0.0044 (10)
O100.0324 (15)0.0292 (16)0.092 (3)−0.0027 (12)−0.0165 (14)0.0010 (15)
O110.0227 (11)0.0229 (13)0.0325 (13)−0.0041 (9)−0.0061 (9)−0.0072 (10)
O120.0345 (14)0.0271 (16)0.083 (2)−0.0088 (12)0.0005 (14)−0.0237 (15)
O130.0344 (13)0.0266 (14)0.0307 (14)−0.0070 (10)−0.0032 (10)−0.0022 (11)
O140.0464 (19)0.042 (2)0.113 (3)−0.0079 (15)−0.0280 (19)0.010 (2)
O150.0255 (12)0.0275 (13)0.0314 (13)−0.0073 (10)0.0021 (9)−0.0099 (10)
O160.0386 (16)0.0363 (18)0.107 (3)−0.0088 (13)−0.0085 (16)−0.0329 (18)
N10.0184 (12)0.0431 (19)0.0266 (16)−0.0106 (12)0.0003 (10)−0.0113 (13)
N40.0177 (13)0.0339 (17)0.0290 (16)−0.0072 (11)−0.0011 (10)−0.0091 (13)
C10.0154 (14)0.0269 (19)0.0286 (18)−0.0065 (13)−0.0047 (12)−0.0048 (14)
C20.0208 (14)0.0259 (18)0.0225 (17)−0.0064 (13)−0.0039 (12)−0.0025 (13)
C30.0201 (15)0.032 (2)0.0293 (19)−0.0111 (13)−0.0030 (12)−0.0107 (15)
C40.0320 (19)0.029 (2)0.033 (2)−0.0072 (16)−0.0045 (15)−0.0047 (16)
C50.0214 (14)0.0225 (17)0.0213 (17)−0.0043 (12)−0.0038 (12)−0.0002 (13)
C60.0208 (15)0.041 (2)0.0310 (19)−0.0124 (14)−0.0043 (13)−0.0110 (16)
C70.038 (2)0.028 (2)0.054 (3)−0.0022 (16)−0.0120 (18)−0.0019 (18)
C80.0171 (15)0.0230 (18)0.0318 (19)−0.0045 (12)0.0002 (13)−0.0069 (14)
C90.0294 (19)0.029 (2)0.037 (2)−0.0074 (15)−0.0025 (14)−0.0082 (16)
C100.039 (2)0.036 (2)0.061 (3)−0.0159 (18)−0.0094 (19)−0.009 (2)
C110.0259 (17)0.0274 (19)0.0243 (18)−0.0076 (14)−0.0018 (13)−0.0058 (15)
C120.0341 (18)0.0256 (19)0.0307 (19)−0.0012 (14)0.0010 (14)−0.0066 (15)
C130.048 (2)0.030 (2)0.028 (2)−0.0131 (18)−0.0111 (16)−0.0019 (16)
C140.049 (2)0.028 (2)0.049 (3)−0.0037 (18)−0.0100 (18)−0.0066 (18)
C150.037 (2)0.0250 (19)0.0250 (18)−0.0030 (15)−0.0057 (14)−0.0056 (15)
C160.053 (3)0.035 (2)0.045 (2)−0.0152 (19)−0.0136 (19)−0.0074 (19)
C170.0166 (14)0.0259 (18)0.0307 (19)−0.0053 (12)−0.0017 (12)−0.0079 (14)
C180.0314 (19)0.0227 (19)0.0274 (19)−0.0044 (15)0.0017 (14)−0.0053 (15)
C190.045 (2)0.033 (2)0.053 (3)−0.0170 (19)−0.0065 (19)−0.0024 (19)
C200.0193 (15)0.0227 (17)0.0263 (17)−0.0037 (12)−0.0025 (12)−0.0077 (14)
C210.0292 (18)0.024 (2)0.035 (2)−0.0031 (15)−0.0041 (14)−0.0101 (16)
C220.031 (2)0.039 (3)0.068 (3)−0.0009 (17)−0.0030 (19)−0.007 (2)
C230.0244 (16)0.0253 (18)0.0297 (19)−0.0089 (14)−0.0020 (13)−0.0062 (14)
C240.0402 (19)0.031 (2)0.0278 (19)−0.0125 (15)−0.0089 (15)−0.0066 (15)
C250.035 (2)0.030 (2)0.034 (2)−0.0011 (16)0.0007 (15)−0.0039 (17)
C260.047 (2)0.029 (2)0.048 (2)−0.0081 (18)−0.0035 (18)−0.0008 (18)
C270.0361 (19)0.030 (2)0.0258 (19)−0.0101 (16)−0.0002 (14)−0.0068 (15)
C280.036 (2)0.033 (2)0.050 (3)−0.0026 (16)0.0024 (17)−0.0120 (19)

Geometric parameters (Å, °)

O1—C41.358 (4)C8—H81.0000
O1—C11.446 (3)C9—C101.489 (5)
O2—C41.195 (5)C10—H10A0.9800
O3—C91.357 (4)C10—H10B0.9800
O3—C81.441 (4)C10—H10C0.9800
O4—C91.200 (4)C11—C121.503 (5)
O5—C131.345 (5)C11—H111.0000
O5—C121.443 (4)C12—H12A0.9900
O6—C131.191 (5)C12—H12B0.9900
O7—C151.356 (4)C13—C141.484 (6)
O7—C111.454 (4)C14—H14A0.9800
O8—C151.183 (4)C14—H14B0.9800
O9—C181.364 (4)C14—H14C0.9800
O9—C171.449 (4)C15—C161.483 (5)
O10—C181.186 (4)C16—H16A0.9800
O11—C211.365 (4)C16—H16B0.9800
O11—C201.451 (4)C16—H16C0.9800
O12—C211.196 (4)C17—C201.524 (5)
O13—C251.344 (5)C17—H171.0000
O13—C241.445 (4)C18—C191.481 (5)
O14—C251.197 (5)C19—H19A0.9800
O15—C271.358 (5)C19—H19B0.9800
O15—C231.450 (4)C19—H19C0.9800
O16—C271.189 (4)C20—C231.524 (4)
N1—C61.331 (4)C20—H201.0000
N1—C21.339 (4)C21—C221.485 (5)
N4—C51.329 (4)C22—H22A0.9800
N4—C31.348 (4)C22—H22B0.9800
C1—C21.517 (5)C22—H22C0.9800
C1—C81.524 (5)C23—C241.510 (5)
C1—H11.0000C23—H231.0000
C2—C31.381 (4)C24—H24A0.9900
C3—H30.9500C24—H24B0.9900
C4—C71.481 (5)C25—C261.485 (6)
C5—C61.398 (4)C26—H26A0.9800
C5—C171.514 (5)C26—H26B0.9800
C6—H60.9500C26—H26C0.9800
C7—H7A0.9800C27—C281.480 (5)
C7—H7B0.9800C28—H28A0.9800
C7—H7C0.9800C28—H28B0.9800
C8—C111.529 (4)C28—H28C0.9800
C4—O1—C1116.8 (3)H14A—C14—H14C109.5
C9—O3—C8117.1 (3)H14B—C14—H14C109.5
C13—O5—C12117.4 (3)O8—C15—O7122.5 (3)
C15—O7—C11117.0 (3)O8—C15—C16125.3 (4)
C18—O9—C17117.2 (2)O7—C15—C16112.1 (3)
C21—O11—C20117.7 (2)C15—C16—H16A109.5
C25—O13—C24117.1 (3)C15—C16—H16B109.5
C27—O15—C23116.3 (3)H16A—C16—H16B109.5
C6—N1—C2116.6 (3)C15—C16—H16C109.5
C5—N4—C3116.1 (3)H16A—C16—H16C109.5
O1—C1—C2109.5 (2)H16B—C16—H16C109.5
O1—C1—C8108.3 (2)O9—C17—C5108.2 (3)
C2—C1—C8112.0 (3)O9—C17—C20108.2 (3)
O1—C1—H1109.0C5—C17—C20111.3 (3)
C2—C1—H1109.0O9—C17—H17109.7
C8—C1—H1109.0C5—C17—H17109.7
N1—C2—C3121.4 (3)C20—C17—H17109.7
N1—C2—C1117.3 (3)O10—C18—O9122.1 (3)
C3—C2—C1121.3 (3)O10—C18—C19126.5 (4)
N4—C3—C2122.3 (3)O9—C18—C19111.4 (3)
N4—C3—H3118.9C18—C19—H19A109.5
C2—C3—H3118.9C18—C19—H19B109.5
O2—C4—O1122.2 (3)H19A—C19—H19B109.5
O2—C4—C7125.9 (4)C18—C19—H19C109.5
O1—C4—C7111.9 (3)H19A—C19—H19C109.5
N4—C5—C6121.6 (3)H19B—C19—H19C109.5
N4—C5—C17117.1 (3)O11—C20—C17109.4 (2)
C6—C5—C17121.2 (3)O11—C20—C23105.6 (2)
N1—C6—C5121.9 (3)C17—C20—C23113.0 (3)
N1—C6—H6119.0O11—C20—H20109.6
C5—C6—H6119.0C17—C20—H20109.6
C4—C7—H7A109.5C23—C20—H20109.6
C4—C7—H7B109.5O12—C21—O11122.5 (3)
H7A—C7—H7B109.5O12—C21—C22126.8 (4)
C4—C7—H7C109.5O11—C21—C22110.8 (3)
H7A—C7—H7C109.5C21—C22—H22A109.5
H7B—C7—H7C109.5C21—C22—H22B109.5
O3—C8—C1110.7 (3)H22A—C22—H22B109.5
O3—C8—C11105.3 (2)C21—C22—H22C109.5
C1—C8—C11112.7 (3)H22A—C22—H22C109.5
O3—C8—H8109.3H22B—C22—H22C109.5
C1—C8—H8109.3O15—C23—C24110.2 (3)
C11—C8—H8109.3O15—C23—C20106.1 (2)
O4—C9—O3123.2 (3)C24—C23—C20113.3 (3)
O4—C9—C10125.9 (4)O15—C23—H23109.0
O3—C9—C10110.9 (3)C24—C23—H23109.0
C9—C10—H10A109.5C20—C23—H23109.0
C9—C10—H10B109.5O13—C24—C23109.7 (3)
H10A—C10—H10B109.5O13—C24—H24A109.7
C9—C10—H10C109.5C23—C24—H24A109.7
H10A—C10—H10C109.5O13—C24—H24B109.7
H10B—C10—H10C109.5C23—C24—H24B109.7
O7—C11—C12110.0 (3)H24A—C24—H24B108.2
O7—C11—C8106.2 (2)O14—C25—O13122.8 (4)
C12—C11—C8113.6 (3)O14—C25—C26125.5 (4)
O7—C11—H11109.0O13—C25—C26111.7 (3)
C12—C11—H11109.0C25—C26—H26A109.5
C8—C11—H11109.0C25—C26—H26B109.5
O5—C12—C11109.3 (3)H26A—C26—H26B109.5
O5—C12—H12A109.8C25—C26—H26C109.5
C11—C12—H12A109.8H26A—C26—H26C109.5
O5—C12—H12B109.8H26B—C26—H26C109.5
C11—C12—H12B109.8O16—C27—O15122.4 (3)
H12A—C12—H12B108.3O16—C27—C28125.9 (4)
O6—C13—O5122.8 (4)O15—C27—C28111.7 (3)
O6—C13—C14125.6 (4)C27—C28—H28A109.5
O5—C13—C14111.6 (3)C27—C28—H28B109.5
C13—C14—H14A109.5H28A—C28—H28B109.5
C13—C14—H14B109.5C27—C28—H28C109.5
H14A—C14—H14B109.5H28A—C28—H28C109.5
C13—C14—H14C109.5H28B—C28—H28C109.5
C4—O1—C1—C2−101.0 (3)C8—C11—C12—O549.8 (4)
C4—O1—C1—C8136.6 (3)C12—O5—C13—O6−1.4 (6)
C6—N1—C2—C31.7 (5)C12—O5—C13—C14177.0 (3)
C6—N1—C2—C1−176.7 (3)C11—O7—C15—O8−1.9 (5)
O1—C1—C2—N1−43.2 (4)C11—O7—C15—C16178.3 (3)
C8—C1—C2—N177.0 (4)C18—O9—C17—C5−106.6 (3)
O1—C1—C2—C3138.3 (3)C18—O9—C17—C20132.6 (3)
C8—C1—C2—C3−101.5 (3)N4—C5—C17—O9149.7 (3)
C5—N4—C3—C2−0.1 (5)C6—C5—C17—O9−33.0 (4)
N1—C2—C3—N4−1.0 (5)N4—C5—C17—C20−91.5 (3)
C1—C2—C3—N4177.3 (3)C6—C5—C17—C2085.8 (4)
C1—O1—C4—O20.4 (5)C17—O9—C18—O10−3.2 (5)
C1—O1—C4—C7179.7 (3)C17—O9—C18—C19176.8 (3)
C3—N4—C5—C60.4 (5)C21—O11—C20—C17107.7 (3)
C3—N4—C5—C17177.7 (3)C21—O11—C20—C23−130.4 (3)
C2—N1—C6—C5−1.4 (5)O9—C17—C20—O1166.6 (3)
N4—C5—C6—N10.3 (5)C5—C17—C20—O11−52.2 (3)
C17—C5—C6—N1−176.8 (3)O9—C17—C20—C23−50.7 (3)
C9—O3—C8—C1102.4 (3)C5—C17—C20—C23−169.5 (2)
C9—O3—C8—C11−135.4 (3)C20—O11—C21—O126.4 (5)
O1—C1—C8—O364.7 (3)C20—O11—C21—C22−174.5 (3)
C2—C1—C8—O3−56.2 (3)C27—O15—C23—C24−101.2 (3)
O1—C1—C8—C11−53.0 (3)C27—O15—C23—C20135.7 (3)
C2—C1—C8—C11−173.9 (2)O11—C20—C23—O15−178.5 (3)
C8—O3—C9—O46.0 (5)C17—C20—C23—O15−59.0 (3)
C8—O3—C9—C10−173.8 (3)O11—C20—C23—C2460.5 (3)
C15—O7—C11—C12−103.5 (3)C17—C20—C23—C24180.0 (3)
C15—O7—C11—C8133.2 (3)C25—O13—C24—C23−137.3 (3)
O3—C8—C11—O7−178.4 (3)O15—C23—C24—O13−68.2 (3)
C1—C8—C11—O7−57.5 (3)C20—C23—C24—O1350.5 (4)
O3—C8—C11—C1260.6 (3)C24—O13—C25—O14−1.0 (6)
C1—C8—C11—C12−178.5 (3)C24—O13—C25—C26178.2 (3)
C13—O5—C12—C11−134.8 (3)C23—O15—C27—O16−2.4 (5)
O7—C11—C12—O5−69.1 (3)C23—O15—C27—C28178.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C3—H3···N1i0.952.613.338 (5)134
C6—H6···N4ii0.952.603.331 (5)134
C7—H7B···O2ii0.982.573.400 (5)142
C19—H19A···O12iii0.982.583.443 (5)147
C19—H19B···O10ii0.982.583.407 (5)142
C19—H19C···O2iii0.982.533.472 (6)161
C26—H26B···O14i0.982.603.471 (6)148

Symmetry codes: (i) x+1, y, z; (ii) x−1, y, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2446).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Alper, P. B., Hung, S.-C. & Wong, C.-H. (1996). Tetrahedron Lett.37, 6029–6032.
  • Bovin, N. V., Zurabyan, S. E. & Khorlin, A. Y. (1981). Carbohydr. Res.98, 25–35.
  • Bruker (2001). SMART (Version 5.045) and SAINT (Version 6.22). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Klein, A., Kasack, V., Reinhardt, R., Scheiring, T., Sixt, T., Zalis, S., Fiedler, J. & Kaim, W. (1999). J. Chem. Soc. Dalton Trans. pp. 575–582.
  • Myers, A. G., Kung, D. W. & Zhong, B. (2000). J. Am. Chem. Soc.122, 3236–3237.
  • Paulsen, H., Lorentzen, J. P. & Kutschker, W. (1985). Carbohydr. Res.136, 153–176.
  • Paulsen, H. & Stenzel, W. (1978). Chem. Ber.111, 2334–2348.
  • Pavliak, V. & Kovac, P. (1991). Carbohydr. Res.210, 333–337. [PubMed]
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Vasella, A., Witzig, C. & Martin-Lomas, M. (1991). Helv. Chim. Acta, 74, 2073–2077.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography