PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o48.
Published online 2007 December 6. doi:  10.1107/S1600536807061235
PMCID: PMC2915006

2,3,10,11-Tetra­meth­oxy-6,7,14,15-tetra­hydro-6,14-methano­cyclo­octa­[1,2-b;5,6-b′]diquinoline

Abstract

The racemic title compound, C27H26N2O4, crystallizes with its central carbon bridge on a twofold axis. It forms parallel chains of mol­ecules utilizing aryl offset face–face inter­actions with an interplanar distance of about 3.5 Å. These chains associate further by means of pairs of O—CH2—H(...)π (with H–ring distances ranging from 2.69 to 2.95 Å) and O—CH2—H(...)N motifs. The meth­oxy groups in this structure are coplanar with the aromatic rings to which they are attached. This is recognized as being common behaviour amongst aromatic meth­oxy compounds.

Related literature

Condensation of two equivalents of a 2-amino­benzaldehyde derivative with one of bicyclo­[3.3.1]nonane-2,6-dione provides a V-shaped diquinoline adduct by means of the Friedländer condensation (Cheng & Yan, 1982 [triangle]). Substituted mol­ecules of this general structural type frequently act as lattice inclusion hosts (Bishop, 2006 [triangle]). For related literature, see: Allen (2002 [triangle]); Desiraju & Gavezzotti (1989 [triangle]); Marjo et al. (1997 [triangle]); Pendrak et al. (1995 [triangle]); Schaefer & Honig (1968 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o48-scheme1.jpg

Experimental

Crystal data

  • C27H26N2O4
  • M r = 442.5
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o48-efi1.jpg
  • a = 14.137 (7) Å
  • b = 9.533 (6) Å
  • c = 16.551 (7) Å
  • β = 100.79 (3)°
  • V = 2191 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 294 K
  • 0.12 mm (radius)

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 1999 measured reflections
  • 1926 independent reflections
  • 803 reflections with I > 2σ(I)
  • R int = 0.062
  • 1 standard reflection frequency: 30 min intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.053
  • S = 1.41
  • 803 reflections
  • 150 parameters
  • H-atom parameters not refined
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.48 e Å−3

Data collection: CAD-4 Software (Schagen et al., 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: Local program; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: RAELS (Rae, 2000 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]) and CrystalMaker (CrystalMaker, 2005 [triangle]); software used to prepare material for publication: Local programs.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061235/ln2008sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061235/ln2008Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by the UNSW Faculty Research Grants Program.

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, (1), contains half a molecule, with the central bridging carbon atom located on a twofold axis (Fig. 1).

Molecules of (1) form parallel chains along the ac diagonal (Fig. 2), associating by means of exo,exo-facial aryl offset face-face (OFF) interactions (Desiraju & Gavezzotti, 1989). The distance between the aromatic planes is about 3.5 Å. Complementary to the π···π interaction are a pair of associations between a methoxy group and a quinoline N atom (O—CH2—H···N; d = 2.88 Å), and a pair between an aliphatic methylene and a methoxy group (C—H···O—CH3, d = 2.84 Å). Adjacent chains interact in two ways: by means of a double centrosymmetric O—CH2—H···π interaction (utilizing the 3-methoxy group, with shortest C···C contacts of 3.57 and 3.82 Å) and an O—CH2—H···N interaction (utilizing the 10-methoxy group with C···N of 3.35 Å).

It is noteworthy that the methoxy groups in this structure are co-planar with the aromatic rings to which they are attached. The Cambridge Structural Database (Allen et al., 2002) reveals that this situation is commonplace amongst related compounds. The steric effects resulting from this co-planarity would be sufficient cause for the absence of centrosymmetric dimers utilizing the edge-edge aryl C—H···N supramolecular synthon which are found in the parent the non-methoxy diquinoline adduct (Marjo et al., 1997).

Experimental

2-Amino-4,5-dimethoxybenzaldehyde (Pendrak et al., 1995) (1.20 g, 6.62 mmol) and bicyclo[3.3.1]nonane-2,6-dione (Schaefer & Honig, 1968) (0.38 g, 2.50 mol) were dissolved in hot ethanol (20 ml) and a solution of sodium hydroxide (0.49 g, 12.25 mmol) in ethanol (10 ml) was added. The mixture was refluxed for 5 h, allowed to cool, then kept at 273 K for 5 h. Filtration gave the product 1 (0.51 g, 46%) of m.p. 548–549 K. 13C NMR (75.5 MHz, CDCl3) δ: 29.5 (CH2), 36.6 (CH), 38.2 (CH2), 56.2 (CH3), 56.4 (CH3), 104.6 (CH), 107.4 (CH), 123.3 (C), 126.8 (C), 134.7 (CH), 144.3 (C), 149.7 (C), 152.3 (C), 159.2 (C); 1H NMR (300 MHz, CDCl3) δ: 2.49 (br s, 2H), 3.25 & 3.32 (d, 2H, JAB 16.6 Hz), 3.42 & 3.49 (dd, 2H, JAB 16.6, JBX 5.3 Hz), 3.70 (d, 2H, J 2.6 Hz), 3.91 (s, 6H), 3.99 (s, 6H), 6.79 (s, 2H), 7.32 (s, 2H), 7.50 (s, 2H). X-ray quality crystals were obtained from ethyl acetate solution.

Refinement

All hydrogen atoms were placed geometrically with C—H = 1.0 Å and Uiso(H) = Ueq(C).

Figures

Fig. 1.
Molecular structure of (1), with ellipsoids drawn at 30% probability level. Symmetry code: (i) 1 - x, y, 3/2 - z.
Fig. 2.
The chain of molecules of (1) with centrosymmetric OFF interactions between exo-surfaces of the aromatic wings. Adjacent molecules are of the opposite chirality.
Fig. 3.
The chain (top) interacts with adjacent chains in two ways: a double CH3···π interaction (pair of arrows at the bottom of the figure) and a CH3···N interaction (at the left of the figure).

Crystal data

C27H26N2O4F000 = 936.0
Mr = 442.5Dx = 1.34 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
a = 14.137 (7) ÅCell parameters from 11 reflections
b = 9.533 (6) Åθ = 10–11º
c = 16.551 (7) ŵ = 0.09 mm1
β = 100.79 (3)ºT = 294 K
V = 2191 (2) Å3Irregular, colourless
Z = 40.12 mm (radius)

Data collection

Enraf–Nonius CAD-4 diffractometerθmax = 25º
ω–2θ scansh = −16→16
Absorption correction: nonek = 0→11
1999 measured reflectionsl = 0→19
1926 independent reflections1 standard reflections
803 reflections with I > 2σ(I) every 30 min
Rint = 0.062 intensity decay: none

Refinement

Refinement on FH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.050  w = 1/[σ2(F) + 0.0004F2]
wR(F2) = 0.053(Δ/σ)max = 0.001
S = 1.41Δρmax = 0.56 e Å3
803 reflectionsΔρmin = −0.48 e Å3
150 parametersExtinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.3447 (2)−0.0160 (3)0.3564 (2)0.059 (1)
O20.2109 (2)−0.1040 (3)0.4273 (2)0.0559 (9)
N10.4643 (2)0.2977 (4)0.5789 (2)0.047 (1)
C10.5320 (4)0.4581 (5)0.6853 (3)0.055 (1)
C20.4554 (3)0.3525 (4)0.6509 (3)0.043 (1)
C30.3824 (3)0.3145 (5)0.6937 (3)0.045 (1)
C40.3736 (3)0.3841 (5)0.7746 (3)0.054 (1)
C50.50000.5529 (7)0.75000.062 (2)
C60.3986 (3)0.1982 (4)0.5451 (3)0.041 (1)
C70.4076 (3)0.1425 (5)0.4682 (2)0.042 (1)
C80.3440 (3)0.0430 (5)0.4314 (3)0.043 (1)
C90.2697 (3)−0.0039 (5)0.4705 (3)0.042 (1)
C100.2596 (3)0.0469 (4)0.5446 (3)0.044 (1)
C110.3242 (3)0.1518 (5)0.5843 (2)0.042 (1)
C120.3174 (3)0.2147 (5)0.6597 (3)0.045 (1)
C130.4183 (4)0.0306 (6)0.3148 (3)0.076 (2)
C140.1350 (3)−0.1571 (5)0.4654 (3)0.061 (1)
HC10.54530.51820.63920.055
H1C40.35770.31100.81320.054
H2C40.32070.45520.76400.054
H1C50.44510.61350.72350.0620.5
H2C50.55490.61350.77650.0620.5
HC70.46050.17550.44040.042
HC100.20680.01100.57170.044
HC120.26460.18630.68890.045
H1C130.4120−0.01910.26090.076
H2C130.41180.13400.30510.076
H3C130.48270.00980.34920.076
H1C140.0972−0.22870.42870.061
H2C140.1634−0.20140.51930.061
H3C140.0917−0.07830.47480.061

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.058 (2)0.066 (2)0.055 (2)−0.016 (2)0.018 (2)−0.021 (2)
O20.050 (2)0.057 (2)0.060 (2)−0.014 (2)0.007 (2)0.003 (2)
N10.049 (2)0.050 (3)0.040 (2)−0.007 (2)0.000 (2)0.002 (2)
C10.067 (3)0.050 (3)0.044 (3)−0.007 (3)0.000 (3)0.004 (3)
C20.049 (3)0.039 (3)0.040 (3)0.005 (2)0.001 (2)0.004 (3)
C30.046 (3)0.047 (3)0.039 (3)0.009 (2)0.001 (2)0.007 (2)
C40.060 (3)0.060 (3)0.039 (3)0.020 (3)−0.001 (2)−0.006 (3)
C50.089 (6)0.045 (5)0.048 (4)0.0000−0.002 (4)0.0000
C60.039 (3)0.044 (3)0.038 (3)0.006 (2)0.002 (2)0.007 (2)
C70.036 (3)0.054 (3)0.039 (3)−0.006 (2)0.010 (2)−0.003 (3)
C80.042 (3)0.045 (3)0.040 (3)0.006 (2)0.007 (2)0.002 (3)
C90.036 (3)0.041 (3)0.047 (3)−0.006 (2)0.001 (2)0.001 (3)
C100.038 (3)0.043 (3)0.051 (3)−0.003 (2)0.006 (2)0.006 (2)
C110.042 (3)0.044 (3)0.040 (3)0.006 (3)0.007 (2)0.013 (3)
C120.043 (3)0.054 (3)0.038 (3)0.006 (3)0.007 (2)0.012 (2)
C130.074 (4)0.106 (5)0.056 (3)−0.032 (3)0.029 (3)−0.029 (3)
C140.050 (3)0.060 (3)0.072 (3)−0.017 (3)0.004 (3)0.008 (3)

Geometric parameters (Å, °)

O1—C81.365 (4)C6—C71.406 (5)
O1—C131.421 (5)C6—C111.407 (5)
O2—C91.375 (5)C7—C81.369 (5)
O2—C141.434 (4)C7—HC71.000
N1—C21.328 (5)C8—C91.406 (5)
N1—C61.371 (5)C9—C101.352 (5)
C1—C21.510 (6)C10—C111.428 (5)
C1—C4i1.545 (6)C10—HC101.000
C1—C51.532 (5)C11—C121.405 (5)
C1—HC11.000C12—HC121.000
C2—C31.405 (5)C13—H1C131.000
C3—C41.520 (5)C13—H2C131.000
C3—C121.368 (5)C13—H3C131.000
C4—H1C41.000C14—H1C141.000
C4—H2C41.000C14—H2C141.000
C5—H1C51.000C14—H3C141.000
C5—H2C51.000
C8—O1—C13116.3 (4)C6—C7—C8120.1 (4)
C9—O2—C14116.5 (3)C6—C7—HC7119.9
C2—N1—C6117.9 (4)C8—C7—HC7119.9
C2—C1—C4i111.0 (4)O1—C8—C7125.1 (4)
C2—C1—C5111.9 (4)O1—C8—C9114.9 (4)
C2—C1—HC1108.6C7—C8—C9120.0 (4)
C4i—C1—C5108.3 (3)O2—C9—C8114.4 (4)
C4i—C1—HC1108.6O2—C9—C10124.3 (4)
C5—C1—HC1108.6C8—C9—C10121.3 (4)
N1—C2—C1114.8 (4)C9—C10—C11120.0 (4)
N1—C2—C3123.6 (4)C9—C10—HC10120.0
C1—C2—C3121.6 (4)C11—C10—HC10120.0
C2—C3—C4121.3 (4)C6—C11—C10118.5 (4)
C2—C3—C12118.2 (4)C6—C11—C12117.2 (4)
C4—C3—C12120.5 (4)C10—C11—C12124.3 (4)
C1i—C4—C3111.8 (4)C3—C12—C11120.7 (4)
C1i—C4—H1C4108.9C3—C12—HC12119.7
C1i—C4—H2C4108.9C11—C12—HC12119.7
C3—C4—H1C4108.9O1—C13—H1C13109.5
C3—C4—H2C4108.9O1—C13—H2C13109.5
H1C4—C4—H2C4109.5O1—C13—H3C13109.5
C1—C5—C1i107.7 (5)H1C13—C13—H2C13109.5
C1—C5—H1C5109.9H1C13—C13—H3C13109.5
C1—C5—H2C5109.9H2C13—C13—H3C13109.5
C1i—C5—H1C5109.9O2—C14—H1C14109.5
C1i—C5—H2C5109.9O2—C14—H2C14109.5
H1C5—C5—H2C5109.5O2—C14—H3C14109.5
N1—C6—C7117.5 (4)H1C14—C14—H2C14109.5
N1—C6—C11122.5 (4)H1C14—C14—H3C14109.5
C7—C6—C11120.0 (4)H2C14—C14—H3C14109.5

Symmetry codes: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H3C14···N1ii1.002.8823.723 (5)142
C14—H3C14···N1iii1.002.9583.348 (5)104

Symmetry codes: (ii) −x+1/2, −y+1/2, −z+1; (iii) x−1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2008).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Bishop, R. (2006). Crystal Engineering of Halogenated Heteroaromatic Clathrate Systems In Frontiers in Crystal Engineering, ch. 5, pp. 91–116, edited by E. R. T. Tiekink & J. J. Vittal. Chichester: Wiley.
  • Cheng, C.-C. & Yan, S.-J. (1982). Org. React.28, 37–201.
  • CrystalMaker (2005). CrystalMaker CrystalMaker Software, Bicester, Oxfordshire, England. http://www.crystalmaker.co.uk.
  • Desiraju, G. R. & Gavezzotti, A. (1989). Acta Cryst. B45, 473–482.
  • Johnson, C. K. (1976). ORTEPII, Oak Ridge National Laboratory, Tennessee, USA.
  • Marjo, C. E., Scudder, M. L., Craig, D. C. & Bishop, R. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 2099–2104.
  • Pendrak, I., Wittrock, R. & Kingsbury, W. D. (1995). J. Org. Chem.60, 2912–2915.
  • Rae, A. D. (2000). RAELS Australian National University, Canberra.
  • Schaefer, J. P. & Honig, L. M. (1968). J. Org. Chem.33, 2655–2659.
  • Schagen, J. D., Straver, L., van Meurs, F. & Williams, G. (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography