PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o46.
Published online 2007 December 6. doi:  10.1107/S1600536807062319
PMCID: PMC2915004

4,4′-Bipyridine acetic acid disolvate

Abstract

The crystal structure of the title compound, C10H8N2·2C2H4O2, is built up from 4,4′-bipyridine and acetic acid mol­ecules linked by strong O—H(...)N hydrogen bonds. The 4,4′-bipyridine and the two acetic acid mol­ecules are further connected through weak C—H(...)O hydrogen bonds to form a supra­molecular two-dimensional network parallel to the (001) plane. The two pyridine rings make a dihedral angle of 31.8 (1)°.

Related literature

For related literature, see: Dai et al. (2005 [triangle]); Li et al. (2005 [triangle]); Pedireddi et al. (1998 [triangle]); Wang et al. (2006 [triangle]). For structural analysis, see: Spek (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o46-scheme1.jpg

Experimental

Crystal data

  • C10H8N2·2C2H4O2
  • M r = 276.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o46-efi1.jpg
  • a = 3.893 (2) Å
  • b = 8.181 (5) Å
  • c = 22.563 (15) Å
  • β = 98.46 (3)°
  • V = 710.7 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 291 (2) K
  • 0.15 × 0.13 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.986, T max = 0.988
  • 6467 measured reflections
  • 1595 independent reflections
  • 995 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.119
  • S = 1.04
  • 1595 reflections
  • 185 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]); ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062319/dn2279sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062319/dn2279Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

2,2-bipyridine is widely used to build up supramolecular network with carboxylic acid (Dai et al., 2005; Li et al., 2005; Pedireddi et al., 1998; Wang et al., 2006). Herein, we report the co-crystal structure of 2,2-bipyridine and acetic acid.

The asymmetric unit of (I) contains one 4,4-bipyridine molecule and two acetic acid molecules linked trough strong O—H···O hydogen bonds (Fig. 1). The two pyridine rings are both planar, with a RMS deviation of fitted atoms being 0.0033 Å and 0.0074 Å, respectively. The dihedral angle between them is 31.8 (1) °.

The 4,4-bipyridine and the two acetic acid molecules are further connected through C—H···O weak hydrogen bonds (PLATON, Spek, 2003) involving the carboxyl oxygen atoms (Table 1) to build up a supramolecular two dimensionnal network.parallel to the (0 0 1) plane (Fig. 2).

Experimental

A mixture of 2,2-bipyridine (5 mmol, 0.78 g) and acetic acid (10 mmol, 0.60 g) in water (10 ml) was stirred for 2 h, and filtrate was allowed to evaporate at room temperature. Colorless single crystals of the title compound were formed after two weeks.

Refinement

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic or O) or Uiso(H) = 1.5Ueq(Cmethyl).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Figures

Fig. 1.
The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Packing view showing the Hydrogen bonding network. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C10H8N2·2C2H4O2F000 = 292
Mr = 276.29Dx = 1.291 Mg m3
Monoclinic, PcMo Kα radiation λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4188 reflections
a = 3.893 (2) Åθ = 3.1–27.5º
b = 8.181 (5) ŵ = 0.10 mm1
c = 22.563 (15) ÅT = 291 (2) K
β = 98.46 (3)ºBlock, colorless
V = 710.7 (7) Å30.15 × 0.13 × 0.12 mm
Z = 2

Data collection

Rigaku RAXIS-RAPID diffractometer1595 independent reflections
Radiation source: fine-focus sealed tube995 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
T = 291(2) Kθmax = 27.5º
ω scansθmin = 3.1º
Absorption correction: multi-scan(ABSCOR; Higashi, 1995)h = −5→5
Tmin = 0.986, Tmax = 0.988k = −10→10
6467 measured reflectionsl = −29→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.119  w = 1/[σ2(Fo2) + (0.0545P)2 + 0.0575P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.003
1595 reflectionsΔρmax = 0.15 e Å3
185 parametersΔρmin = −0.12 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Experimental. (See detailed section in the paper)
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C13−0.0181 (13)−0.0149 (6)0.6249 (2)0.0728 (12)
H13A0.1830−0.06600.64700.109*
H13B−0.1649−0.09680.60390.109*
H13C−0.14370.04230.65210.109*
C140.0919 (10)0.1019 (5)0.5814 (2)0.0568 (10)
C10.4437 (12)0.3978 (5)0.47047 (19)0.0697 (11)
H10.45720.28610.46360.084*
C20.4896 (13)0.5031 (5)0.4247 (2)0.0640 (10)
H20.53060.46220.38790.077*
C30.4742 (9)0.6695 (4)0.43371 (16)0.0488 (9)
C40.4131 (11)0.7207 (5)0.48979 (19)0.0613 (11)
H40.40200.83160.49840.074*
C50.3695 (12)0.6071 (5)0.5321 (2)0.0690 (12)
H50.32850.64410.56940.083*
C60.5176 (9)0.7891 (4)0.38616 (17)0.0483 (9)
C70.4150 (11)0.7538 (5)0.32659 (19)0.0599 (11)
H70.32180.65200.31520.072*
C80.4513 (11)0.8706 (5)0.2839 (2)0.0654 (11)
H80.37700.84490.24400.078*
C90.6937 (12)1.0494 (5)0.35465 (19)0.0649 (11)
H90.79421.15070.36460.078*
C100.6649 (11)0.9422 (5)0.39995 (18)0.0599 (10)
H100.74260.97090.43950.072*
N10.3818 (10)0.4468 (4)0.52352 (16)0.0655 (9)
O10.9176 (9)1.3967 (4)0.29266 (15)0.0859 (11)
O30.0627 (10)0.0786 (4)0.52832 (15)0.0938 (11)
C110.8647 (13)1.5081 (6)0.1948 (2)0.0764 (14)
H11A1.01551.59260.21310.115*
H11B0.64381.55450.17890.115*
H11C0.96641.45850.16300.115*
C120.8156 (11)1.3817 (4)0.2405 (2)0.0565 (10)
N20.5861 (9)1.0176 (4)0.29663 (16)0.0631 (9)
O20.6441 (8)1.2545 (3)0.21698 (13)0.0698 (8)
H2A0.62941.18640.24320.105*
O40.2338 (8)0.2354 (3)0.60567 (13)0.0711 (9)
H4A0.29020.29470.57940.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C130.074 (3)0.066 (3)0.075 (3)−0.009 (2)0.001 (2)0.010 (2)
C140.056 (2)0.051 (2)0.061 (3)0.0012 (18)0.0008 (19)−0.005 (2)
C10.097 (3)0.050 (2)0.063 (3)0.005 (2)0.013 (2)0.004 (2)
C20.082 (3)0.053 (2)0.057 (2)0.002 (2)0.0112 (19)0.000 (2)
C30.049 (2)0.0470 (19)0.049 (2)0.0035 (17)0.0013 (16)0.0002 (17)
C40.078 (3)0.048 (2)0.058 (3)0.0023 (19)0.012 (2)0.0001 (19)
C50.083 (3)0.070 (3)0.054 (2)0.003 (2)0.013 (2)−0.001 (2)
C60.0467 (19)0.0427 (18)0.055 (2)−0.0021 (16)0.0050 (16)0.0016 (17)
C70.075 (3)0.048 (2)0.054 (2)−0.0082 (19)0.003 (2)0.002 (2)
C80.080 (3)0.056 (2)0.058 (2)−0.009 (2)0.004 (2)0.000 (2)
C90.075 (3)0.048 (2)0.070 (3)−0.0104 (19)0.003 (2)−0.002 (2)
C100.069 (3)0.051 (2)0.056 (2)−0.0030 (19)−0.001 (2)−0.0051 (19)
N10.077 (2)0.058 (2)0.062 (2)−0.0027 (17)0.0123 (17)0.0040 (18)
O10.119 (3)0.072 (2)0.062 (2)−0.0298 (19)−0.0012 (19)−0.0039 (17)
O30.143 (3)0.076 (2)0.059 (2)−0.021 (2)0.002 (2)−0.0126 (18)
C110.079 (3)0.067 (3)0.083 (4)−0.012 (2)0.008 (2)0.015 (2)
C120.067 (3)0.044 (2)0.059 (3)−0.0042 (19)0.010 (2)0.000 (2)
N20.076 (2)0.0469 (19)0.065 (2)−0.0092 (16)0.0076 (17)0.0014 (17)
O20.096 (2)0.0558 (17)0.0559 (18)−0.0206 (16)0.0061 (16)−0.0045 (13)
O40.098 (2)0.0591 (18)0.0567 (19)−0.0146 (16)0.0117 (16)−0.0058 (14)

Geometric parameters (Å, °)

C13—C141.478 (6)C6—C101.393 (5)
C13—H13A0.9600C7—C81.378 (6)
C13—H13B0.9600C7—H70.9300
C13—H13C0.9600C8—N21.326 (5)
C14—O31.201 (5)C8—H80.9300
C14—O41.307 (5)C9—N21.340 (5)
C1—N11.317 (6)C9—C101.364 (6)
C1—C21.377 (6)C9—H90.9300
C1—H10.9300C10—H100.9300
C2—C31.380 (5)O1—C121.191 (5)
C2—H20.9300C11—C121.493 (6)
C3—C41.386 (6)C11—H11A0.9600
C3—C61.480 (5)C11—H11B0.9600
C4—C51.361 (6)C11—H11C0.9600
C4—H40.9300C12—O21.306 (4)
C5—N11.328 (5)O2—H2A0.8200
C5—H50.9300O4—H4A0.8200
C6—C71.375 (5)
C14—C13—H13A109.5C10—C6—C3121.3 (3)
C14—C13—H13B109.5C6—C7—C8119.5 (4)
H13A—C13—H13B109.5C6—C7—H7120.3
C14—C13—H13C109.5C8—C7—H7120.3
H13A—C13—H13C109.5N2—C8—C7123.8 (4)
H13B—C13—H13C109.5N2—C8—H8118.1
O3—C14—O4121.5 (4)C7—C8—H8118.1
O3—C14—C13124.4 (4)N2—C9—C10124.0 (4)
O4—C14—C13114.0 (4)N2—C9—H9118.0
N1—C1—C2123.6 (4)C10—C9—H9118.0
N1—C1—H1118.2C9—C10—C6119.2 (4)
C2—C1—H1118.2C9—C10—H10120.4
C1—C2—C3119.5 (4)C6—C10—H10120.4
C1—C2—H2120.2C1—N1—C5116.6 (4)
C3—C2—H2120.2C12—C11—H11A109.5
C2—C3—C4116.8 (4)C12—C11—H11B109.5
C2—C3—C6122.2 (3)H11A—C11—H11B109.5
C4—C3—C6121.0 (3)C12—C11—H11C109.5
C5—C4—C3119.4 (4)H11A—C11—H11C109.5
C5—C4—H4120.3H11B—C11—H11C109.5
C3—C4—H4120.3O1—C12—O2124.1 (4)
N1—C5—C4124.1 (4)O1—C12—C11123.6 (4)
N1—C5—H5117.9O2—C12—C11112.3 (4)
C4—C5—H5117.9C8—N2—C9116.3 (4)
C7—C6—C10117.3 (3)C12—O2—H2A109.5
C7—C6—C3121.4 (3)C14—O4—H4A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.862.675 (5)175
O4—H4A···N10.821.842.659 (5)173
C7—H7···O1i0.932.623.526 (5)165
C10—H10···O3ii0.932.373.273 (5)164
C4—H4···O3iii0.932.563.397 (6)150

Symmetry codes: (i) x−1, y−1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2279).

References

  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Dai, Y.-M., Huang, J.-F. & Shen, H.-Y. (2005). Acta Cryst. E61, o3919–o3920.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, X.-H., Lei, X.-X. & Wang, S. (2005). Acta Cryst. E61, o1802–o1804.
  • Pedireddi, V. R., Ranganathan, A. & Chatterjee, S. (1998). Tetrahedron Lett.39, 9831–9834.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, Z.-L., Wei, L.-H. & Li, M.-X. (2006). Acta Cryst. E62, o3031–o3032.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography