PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o45.
Published online 2007 December 6. doi:  10.1107/S1600536807062629
PMCID: PMC2915003

Ethyl 5-chloro­methyl-2-methyl­sulfanyl-7-phenyl-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxyl­ate

Abstract

In the title compound, C16H17ClN4O2S, the bicyclic triazolopyrimidine ring system is nearly planar and oriented with respect to the benzene ring at a dihedral angle of 87.24 (3)°. In the crystal structure, inter­molecular N—H(...)N hydrogen bonds link the mol­ecules into centrosymmetric dimers; an intra­molecular C—H(...)O hydrogen bond is also present.

Related literature

For related literature, see: Fedorova et al. (2003 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o45-scheme1.jpg

Experimental

Crystal data

  • C16H17ClN4O2S
  • M r = 364.85
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o45-efi1.jpg
  • a = 8.9280 (8) Å
  • b = 9.8217 (9) Å
  • c = 11.3775 (10) Å
  • α = 106.022 (2)°
  • β = 102.631 (2)°
  • γ = 109.919 (2)°
  • V = 845.85 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.37 mm−1
  • T = 292 (2) K
  • 0.20 × 0.10 × 0.02 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: none
  • 6662 measured reflections
  • 3281 independent reflections
  • 2295 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.156
  • S = 1.02
  • 3281 reflections
  • 222 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Bruker, 2001 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062629/hk2399sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062629/hk2399Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The present work was supported by the National NSFC (grant Nos. 20572030, 20432010 and 20528201), the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (grant No. 705039), and the Program for Excellent Research Groups of Hubei Province (grant No. 2004ABC002).

supplementary crystallographic information

Comment

In recent years, growing attention has been paid to analogues of purines and nucleosides, including azolopyrimidines containing the bridge head nitrogen atom and their dihydro derivatives, among which promising biologically active compounds were found (Fedorova et al., 2003). We synthesized a novel class of ethyl 7-alkylthio-4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidine-6-carboxylate derivatives by three component condensation of 3-amino-5-alkylthio-1,2,4 -triazoles with aromatic aldehydes and β-keto ester. We report herein the crystal structure of one such analogue, a triazolopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are within normal ranges (Allen et al., 1987). Rings A (N1—N3/C2/C3), B (N3/N4/C3—C6) and C (C11—C16) are, of course, planar. The bicyclic triazolopyrimidine ring system (N1—N4/C2—C6) is nearly planar with a maximum deviation of 0.152 (3) Å (for atom C6), and it is oriented with respect to ring C at a dihedral angle of 87.24 (3)°.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 1, Fig 2) link the molecules into centrosymmetric dimers; an intramolecular C—H···O hydrogen bond (Table 1) is also present.

Experimental

For the preparation of the title compound, a mixture of 4-chloro acetylacetic ester (1 mmol), benzaldehyde (1 mmol), and 3-amino-5-methylthio-1,2,4-triazole (1 mmol) in EtOH (3 ml) was added into a microwave tube. The sealed tube was placed in a Smith synthesizer and irradiated at 333 K for 30 min. The reaction mixture was cooled to room temperature, and the precipitate was filtered and recrystallized from ethanol to give the title compound, (I). Single crystals of (I) suitable for X-ray analysis were grown from an acetone solution at 293 K. 1H NMR (CDCl3, 400 MHz): σ 10.56(s, 1 H), 7.28–7.33(m, 5 H), 6.40(s, 1H), 5.14(d, 1H), 4.95(d, 1H), 4.11(q,2 H), 2.51(s, 3H),1.15(t, 3H).

Refinement

H atom (for NH) was located in a difference sythesis and refined [N—H = 0.85 (3) Å and Uiso(H) = 1.2Ueq(N)]. The remaining H atoms were positioned geometrically, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C16H17ClN4O2SZ = 2
Mr = 364.85F000 = 380
Triclinic, P1Dx = 1.433 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 8.9280 (8) ÅCell parameters from 1660 reflections
b = 9.8217 (9) Åθ = 2.4–22.5º
c = 11.3775 (10) ŵ = 0.37 mm1
α = 106.022 (2)ºT = 292 (2) K
β = 102.631 (2)ºBlock, colorless
γ = 109.919 (2)º0.20 × 0.10 × 0.02 mm
V = 845.85 (13) Å3

Data collection

Bruker SMART 4K CCD area-detector diffractometer2295 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Monochromator: graphiteθmax = 26.0º
T = 292(2) Kθmin = 2.4º
[var phi] and ω scansh = −10→11
Absorption correction: nonek = −12→12
6662 measured reflectionsl = −14→13
3281 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.156  w = 1/[σ2(Fo2) + (0.0839P)2P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3281 reflectionsΔρmax = 0.40 e Å3
222 parametersΔρmin = −0.42 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.52275 (12)0.20019 (13)0.21023 (8)0.0802 (4)
S10.33719 (10)0.12878 (9)0.82617 (8)0.0506 (3)
O10.7924 (2)0.7426 (2)0.57614 (18)0.0458 (5)
O20.8859 (3)0.6249 (3)0.4314 (2)0.0745 (8)
N10.5299 (3)0.3688 (3)0.7737 (2)0.0399 (6)
N20.4832 (3)0.1259 (2)0.6417 (2)0.0394 (6)
N30.6027 (3)0.3760 (2)0.6786 (2)0.0378 (5)
N40.6300 (3)0.2107 (3)0.5023 (2)0.0423 (6)
H40.603 (4)0.119 (4)0.448 (3)0.051*
C10.3128 (5)0.2917 (4)0.9220 (4)0.0875 (14)
H1A0.41750.36190.99260.131*
H1B0.22450.25520.95640.131*
H1C0.28310.34560.86870.131*
C20.4589 (3)0.2173 (3)0.7451 (3)0.0372 (6)
C30.5739 (3)0.2331 (3)0.6044 (2)0.0355 (6)
C40.6994 (3)0.3357 (3)0.4670 (3)0.0396 (7)
C50.7350 (3)0.4840 (3)0.5433 (3)0.0373 (6)
C60.7104 (3)0.5239 (3)0.6746 (3)0.0371 (6)
H60.65050.59130.67950.045*
C70.7226 (4)0.2871 (3)0.3381 (3)0.0480 (8)
H7A0.77190.21250.33290.058*
H7B0.79950.37780.32900.058*
C80.8112 (4)0.6191 (3)0.5077 (3)0.0434 (7)
C90.8778 (4)0.8879 (3)0.5616 (3)0.0488 (8)
H9A0.82840.87850.47330.059*
H9B0.99720.91240.57910.059*
C100.8580 (4)1.0149 (4)0.6559 (3)0.0606 (9)
H10A0.73940.98750.64050.091*
H10B0.90901.11140.64460.091*
H10C0.91271.02740.74330.091*
C110.8775 (3)0.6081 (3)0.7886 (3)0.0361 (6)
C120.9729 (4)0.5313 (4)0.8217 (3)0.0583 (9)
H120.93370.42450.77520.070*
C131.1272 (5)0.6119 (5)0.9238 (4)0.0715 (11)
H131.19020.55870.94610.086*
C141.1866 (4)0.7682 (5)0.9914 (3)0.0668 (10)
H141.29040.82181.05950.080*
C151.0946 (4)0.8466 (4)0.9596 (3)0.0609 (9)
H151.13530.95361.00580.073*
C160.9403 (4)0.7662 (3)0.8584 (3)0.0489 (8)
H160.87780.82020.83710.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0749 (7)0.1054 (8)0.0463 (5)0.0385 (6)0.0133 (5)0.0154 (5)
S10.0548 (5)0.0413 (4)0.0518 (5)0.0097 (3)0.0306 (4)0.0165 (4)
O10.0558 (13)0.0343 (11)0.0494 (12)0.0146 (9)0.0248 (10)0.0193 (9)
O20.110 (2)0.0528 (14)0.0817 (18)0.0305 (14)0.0683 (17)0.0341 (13)
N10.0438 (13)0.0347 (12)0.0378 (13)0.0112 (10)0.0208 (11)0.0105 (10)
N20.0406 (13)0.0330 (12)0.0386 (13)0.0095 (10)0.0172 (10)0.0107 (10)
N30.0428 (13)0.0293 (11)0.0386 (13)0.0089 (10)0.0217 (11)0.0112 (10)
N40.0532 (15)0.0280 (12)0.0428 (14)0.0125 (11)0.0260 (12)0.0084 (10)
C10.112 (3)0.058 (2)0.099 (3)0.025 (2)0.081 (3)0.019 (2)
C20.0364 (15)0.0345 (14)0.0341 (14)0.0096 (11)0.0135 (12)0.0096 (11)
C30.0370 (15)0.0319 (14)0.0339 (14)0.0100 (11)0.0155 (12)0.0109 (11)
C40.0403 (16)0.0363 (15)0.0401 (15)0.0121 (12)0.0184 (13)0.0133 (12)
C50.0394 (16)0.0350 (14)0.0375 (15)0.0129 (12)0.0182 (13)0.0140 (12)
C60.0421 (16)0.0276 (13)0.0412 (15)0.0113 (11)0.0198 (13)0.0127 (11)
C70.0542 (18)0.0405 (16)0.0429 (17)0.0122 (14)0.0226 (14)0.0126 (13)
C80.0467 (17)0.0381 (16)0.0400 (16)0.0109 (13)0.0170 (14)0.0147 (13)
C90.0513 (18)0.0415 (16)0.0533 (19)0.0133 (14)0.0162 (15)0.0274 (15)
C100.064 (2)0.0424 (17)0.072 (2)0.0197 (16)0.0217 (18)0.0227 (16)
C110.0405 (15)0.0315 (14)0.0370 (15)0.0113 (12)0.0202 (12)0.0140 (11)
C120.062 (2)0.0453 (18)0.061 (2)0.0243 (16)0.0141 (17)0.0144 (16)
C130.062 (2)0.079 (3)0.074 (3)0.038 (2)0.012 (2)0.028 (2)
C140.050 (2)0.075 (3)0.053 (2)0.0146 (19)0.0068 (16)0.0160 (19)
C150.067 (2)0.0408 (17)0.0473 (19)0.0064 (16)0.0113 (17)0.0051 (15)
C160.0585 (19)0.0382 (16)0.0425 (17)0.0175 (14)0.0136 (15)0.0118 (13)

Geometric parameters (Å, °)

N1—N31.385 (3)C7—H7B0.9700
N4—H40.85 (3)C8—O21.207 (3)
C1—S11.782 (4)C8—O11.334 (3)
C1—H1A0.9600C9—O11.446 (3)
C1—H1B0.9600C9—C101.494 (4)
C1—H1C0.9600C9—H9A0.9700
C2—N11.312 (3)C9—H9B0.9700
C2—N21.378 (3)C10—H10A0.9600
C2—S11.740 (3)C10—H10B0.9600
C3—N31.324 (3)C10—H10C0.9600
C3—N21.326 (3)C11—C161.374 (4)
C3—N41.356 (3)C11—C121.376 (4)
C4—C51.357 (4)C12—C131.387 (4)
C4—N41.384 (3)C12—H120.9300
C4—C71.495 (4)C13—C141.358 (5)
C5—C81.480 (4)C13—H130.9300
C5—C61.521 (4)C14—C151.361 (5)
C6—N31.463 (3)C14—H140.9300
C6—C111.521 (4)C15—C161.382 (4)
C6—H60.9800C15—H150.9300
C7—Cl11.780 (3)C16—H160.9300
C7—H7A0.9700
C2—S1—C199.99 (15)C4—C7—H7B109.7
C8—O1—C9116.3 (2)Cl1—C7—H7B109.7
C2—N1—N3101.5 (2)H7A—C7—H7B108.2
C3—N2—C2101.5 (2)O2—C8—O1122.2 (3)
C3—N3—N1109.8 (2)O2—C8—C5127.1 (3)
C3—N3—C6127.0 (2)O1—C8—C5110.6 (2)
N1—N3—C6122.9 (2)O1—C9—C10108.3 (2)
C3—N4—C4119.2 (2)O1—C9—H9A110.0
C3—N4—H4121 (2)C10—C9—H9A110.0
C4—N4—H4118 (2)O1—C9—H9B110.0
S1—C1—H1A109.5C10—C9—H9B110.0
S1—C1—H1B109.5H9A—C9—H9B108.4
H1A—C1—H1B109.5C9—C10—H10A109.5
S1—C1—H1C109.5C9—C10—H10B109.5
H1A—C1—H1C109.5H10A—C10—H10B109.5
H1B—C1—H1C109.5C9—C10—H10C109.5
N1—C2—N2115.8 (2)H10A—C10—H10C109.5
N1—C2—S1124.5 (2)H10B—C10—H10C109.5
N2—C2—S1119.64 (19)C16—C11—C12118.2 (3)
N3—C3—N2111.5 (2)C16—C11—C6120.1 (3)
N3—C3—N4120.3 (2)C12—C11—C6121.7 (2)
N2—C3—N4128.2 (2)C11—C12—C13120.5 (3)
C5—C4—N4121.2 (2)C11—C12—H12119.8
C5—C4—C7125.8 (3)C13—C12—H12119.8
N4—C4—C7113.0 (2)C14—C13—C12120.3 (3)
C4—C5—C8121.9 (2)C14—C13—H13119.9
C4—C5—C6122.5 (2)C12—C13—H13119.9
C8—C5—C6115.5 (2)C13—C14—C15120.2 (3)
N3—C6—C11111.1 (2)C13—C14—H14119.9
N3—C6—C5106.7 (2)C15—C14—H14119.9
C11—C6—C5112.6 (2)C14—C15—C16119.7 (3)
N3—C6—H6108.8C14—C15—H15120.2
C11—C6—H6108.8C16—C15—H15120.2
C5—C6—H6108.8C11—C16—C15121.3 (3)
C4—C7—Cl1109.7 (2)C11—C16—H16119.4
C4—C7—H7A109.7C15—C16—H16119.4
Cl1—C7—H7A109.7
N4—C4—C5—C8179.2 (3)N2—C2—N1—N31.7 (3)
C7—C4—C5—C8−3.1 (4)S1—C2—N1—N3−177.30 (19)
N4—C4—C5—C63.4 (4)N3—C3—N2—C20.4 (3)
C7—C4—C5—C6−179.0 (3)N4—C3—N2—C2−177.2 (3)
C4—C5—C6—N3−15.7 (4)N1—C2—N2—C3−1.3 (3)
C8—C5—C6—N3168.2 (2)S1—C2—N2—C3177.67 (19)
C4—C5—C6—C11106.4 (3)N2—C3—N3—N10.6 (3)
C8—C5—C6—C11−69.7 (3)N4—C3—N3—N1178.4 (2)
C5—C4—C7—Cl1−102.2 (3)N2—C3—N3—C6174.0 (2)
N4—C4—C7—Cl175.7 (3)N4—C3—N3—C6−8.2 (4)
C4—C5—C8—O2−18.9 (5)C2—N1—N3—C3−1.3 (3)
C6—C5—C8—O2157.3 (3)C2—N1—N3—C6−175.0 (2)
C4—C5—C8—O1163.3 (3)C11—C6—N3—C3−104.4 (3)
C6—C5—C8—O1−20.5 (3)C5—C6—N3—C318.7 (4)
N3—C6—C11—C16−135.1 (3)C11—C6—N3—N168.2 (3)
C5—C6—C11—C16105.3 (3)C5—C6—N3—N1−168.8 (2)
N3—C6—C11—C1247.4 (4)N3—C3—N4—C4−7.7 (4)
C5—C6—C11—C12−72.2 (3)N2—C3—N4—C4169.7 (3)
C16—C11—C12—C130.7 (5)C5—C4—N4—C39.7 (4)
C6—C11—C12—C13178.2 (3)C7—C4—N4—C3−168.2 (2)
C11—C12—C13—C14−0.7 (6)O2—C8—O1—C9−4.6 (4)
C12—C13—C14—C150.4 (6)C5—C8—O1—C9173.3 (2)
C13—C14—C15—C160.0 (6)C10—C9—O1—C8−173.8 (2)
C12—C11—C16—C15−0.3 (5)N1—C2—S1—C110.4 (3)
C6—C11—C16—C15−177.8 (3)N2—C2—S1—C1−168.5 (3)
C14—C15—C16—C11−0.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.85 (3)2.11 (3)2.939 (3)164 (3)
C7—H7B···O20.972.152.888 (4)132

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2399).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Fedorova, O. V., Zhidovinova, M. S., Rusinov, G. L. & Ovchinnikova, I. G. (2003). Russ. Chem. Bull. Int. Ed.52, 1768–1769.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography