PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o42.
Published online 2007 December 6. doi:  10.1107/S1600536807062484
PMCID: PMC2915000

3-Butyl-2-propyl­amino-1-benzo­thieno[3,2-d]pyrimidin-4(3H)-one

Abstract

In the title compound, C17H21N3OS, the propyl and butyl groups are disordered over two positions; site occupation factors are 0.304 (10) and 0.696 (10). The three fused rings are coplanar. In the crystal structure, inter­molecular N—H(...)O and C—H(...)O hydrogen bonds link the mol­ecules. Further stability is provided by offset π–π stacking inter­actions. Adjacent thienophene–pyrimidine and pyrimidine–benzene rings have centroid–centroid distances of 3.96 (1) and 3.55 (2) Å, respectively.

Related literature

For general background, see: Chambhare et al. (2003 [triangle]); Janiak (2000 [triangle]). For related literature, see: Ding et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o42-scheme1.jpg

Experimental

Crystal data

  • C17H21N3OS
  • M r = 315.43
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o42-efi1.jpg
  • a = 11.4322 (6) Å
  • b = 14.2791 (8) Å
  • c = 11.6704 (6) Å
  • β = 116.606 (1)°
  • V = 1703.36 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 298 (2) K
  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: none
  • 15640 measured reflections
  • 3712 independent reflections
  • 2599 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.175
  • S = 1.04
  • 3712 reflections
  • 279 parameters
  • 23 restraints
  • H-atom parameters constrained
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062484/hk2396sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062484/hk2396Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author acknowledges the National Basic Research Program of China (grant No. 2004CCA00100) and the National Natural Science Foundation of China (grant No. 20102001).

supplementary crystallographic information

Comment

Thienopyrimidine derivatives are of interest as possible antiviral agents, and because of their other biological properties, including antibacterial, antifungal, antiallergic and anti inflammatory activities (Chambhare et al., 2003). We have recently focused on the synthesis of the fused heterocyclic systems containing thienopyrimidine via aza-Wittig reactions at room temperature (Ding et al., 2004). We report herein the structure of one such thienopyrimidine derivative, the title compound, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987). When the crystal structure was solved, propyl and butyl groups were found to be disordered.

Rings A (C1—C6), B (S1/C1/C6—C8) and C (N1/N2/C7—C10) are, of course, planar. The three fused rings A, B and C are also co-planar. The maximum deviation from the benzo[4,5]thieno[3,2-e]-pyrimidinone mean plane is 0.027 (3) Å (for atom C7).

In the crystal structure, intermolecular N—H···O and C—H···O hydrogen bonds (Table 1) link the molecules (Fig. 2), in which they may be effective in the stabilization of the structure. Further stability is provided by offset π-π stacking interactions (Janiak, 2000). The adjacent B, C and A, C rings have centroid-centroid distances of 3.96 (1) %A and 3.55 (2) %A, respectively, [symmetry code: -x, -y, 2 - z].

Experimental

The title compound was synthesized according to a literature method (Ding et al., 2004). The product was recrystallized from ethanol/dichloromethane (1:2 v/v) at room temperature to give crystals suitable for single-crystal X-ray analysis.

Refinement

When the crystal structure was solved, propyl and butyl groups were found to be disordered. During refinement with isotropic thermal parameters, the occupancies of disordered H atoms were refined as H3A, H11, H12A, H12B, H12C, H13A, H13B, H13C = 0.696 (10) and H3', H11', H12D, H12E, H12F, H13D, H13E, H13F = 0.304 (10), while the remaining site occupancy factors were also refined as N3, C11, C12,, C13 = 0.696 (10) and N3', C11', C12', C13' = 0.304 (10), during anisotropic refinement, for propyl group. On the other hand, for butyl group the occupancies of disordered H and non-H atoms were also refined in a similar way as H14A, H14B, H15A, H15B, H16A, H16B, H17A, H17B, H17C = 0.622 (11) and H14C, H14D, H15C, H15D, H16C, H16D, H17D, H17E, H17F = 0.378 (11), while the remaining site occupancy factors were also refined as C14, C15, C16,, C17 = 0.622 (11) and C14', C15', C16', C17' = 0.378 (11). H atoms were positioned geometrically, with N—H = 0.86 Å (for NH) and C—H = 0.93, 0.98, 0.96 and 0.97 Å, for aromatic, methine, methyl and methylene H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A packing diagram of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C17H21N3OSF000 = 672
Mr = 315.43Dx = 1.230 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4476 reflections
a = 11.4322 (6) Åθ = 2.4–24.2º
b = 14.2791 (8) ŵ = 0.20 mm1
c = 11.6704 (6) ÅT = 298 (2) K
β = 116.606 (1)ºBlock, colorless
V = 1703.36 (16) Å30.30 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART 4K CCD area-detector diffractometer2599 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Monochromator: graphiteθmax = 27.0º
T = 298(2) Kθmin = 2.0º
[var phi] and ω scansh = −14→14
Absorption correction: nonek = −17→18
15640 measured reflectionsl = −14→14
3712 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.175  w = 1/[σ2(Fo2) + (0.107P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.004
3712 reflectionsΔρmax = 0.35 e Å3
279 parametersΔρmin = −0.15 e Å3
23 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.13711 (6)0.04643 (4)1.26890 (6)0.0767 (3)
O10.22957 (17)0.23409 (10)1.18589 (13)0.0782 (5)
N10.21439 (19)−0.00118 (12)0.97855 (15)0.0679 (5)
N20.25553 (18)0.16172 (11)1.02369 (15)0.0646 (5)
N30.2992 (7)0.0903 (4)0.8663 (6)0.0835 (17)0.696 (10)
H3A0.32150.14500.85240.100*0.696 (10)
N3'0.2371 (11)0.0885 (9)0.8333 (9)0.057 (2)0.304 (10)
H3'0.22570.14270.79770.068*0.304 (10)
C10.14037 (18)−0.08829 (14)1.11773 (18)0.0588 (5)
C20.1241 (2)−0.17839 (15)1.0674 (2)0.0775 (6)
H20.1433−0.19130.99950.093*
C30.0795 (3)−0.24799 (17)1.1191 (3)0.0921 (8)
H30.0683−0.30821.08550.110*
C40.0510 (3)−0.2299 (2)1.2203 (3)0.0969 (8)
H40.0207−0.27801.25390.116*
C50.0668 (3)−0.14217 (19)1.2713 (3)0.0897 (7)
H50.0479−0.13031.33960.108*
C60.1117 (2)−0.07033 (16)1.2202 (2)0.0663 (5)
C70.18358 (19)−0.00435 (13)1.07820 (16)0.0550 (5)
C80.1850 (2)0.07176 (14)1.15013 (17)0.0569 (5)
C90.2227 (2)0.16126 (14)1.12618 (17)0.0585 (5)
C100.2479 (2)0.08120 (15)0.95393 (19)0.0708 (6)
C110.3166 (9)0.0091 (5)0.7964 (8)0.115 (3)0.696 (10)
H110.3261−0.04900.84460.138*0.696 (10)
C11'0.2443 (15)0.0099 (9)0.7669 (9)0.085 (5)0.304 (10)
H11'0.1795−0.03190.77330.102*0.304 (10)
C120.4388 (5)0.0288 (5)0.7817 (5)0.118 (2)0.696 (10)
H12A0.42920.08730.73770.177*0.696 (10)
H12B0.4525−0.02060.73320.177*0.696 (10)
H12C0.51250.03240.86480.177*0.696 (10)
C12'0.3646 (15)−0.0512 (13)0.8141 (10)0.149 (9)0.304 (10)
H12D0.4229−0.02770.78200.223*0.304 (10)
H12E0.3395−0.11420.78430.223*0.304 (10)
H12F0.4080−0.05070.90610.223*0.304 (10)
C130.1988 (6)0.0047 (7)0.6697 (10)0.139 (4)0.696 (10)
H13A0.1233−0.01010.68210.208*0.696 (10)
H13B0.2109−0.04290.61790.208*0.696 (10)
H13C0.18620.06410.62740.208*0.696 (10)
C13'0.1899 (19)0.0248 (14)0.6251 (10)0.128 (8)0.304 (10)
H13D0.10810.05740.59450.193*0.304 (10)
H13E0.1764−0.03480.58290.193*0.304 (10)
H13F0.25040.06110.60720.193*0.304 (10)
C140.3278 (9)0.2503 (6)1.0136 (9)0.079 (3)0.622 (11)
H14A0.30950.25840.92470.095*0.622 (11)
H14B0.29140.30401.03740.095*0.622 (11)
C14'0.2809 (11)0.2515 (8)0.9807 (12)0.055 (2)0.378 (11)
H14C0.25380.30281.01790.066*0.378 (11)
H14D0.23560.25640.88810.066*0.378 (11)
C150.4741 (8)0.2515 (6)1.0939 (8)0.128 (3)0.622 (11)
H15A0.51200.19761.07250.154*0.622 (11)
H15B0.49410.24681.18380.154*0.622 (11)
C15'0.4291 (10)0.2516 (6)1.0287 (12)0.082 (3)0.378 (11)
H15C0.45550.19830.99410.099*0.378 (11)
H15D0.47330.24791.12150.099*0.378 (11)
C160.5353 (10)0.3408 (6)1.0727 (9)0.174 (4)0.622 (11)
H16A0.47670.39311.06030.209*0.622 (11)
H16B0.61660.35351.14830.209*0.622 (11)
C16'0.4644 (9)0.3432 (6)0.9833 (10)0.100 (3)0.378 (11)
H16C0.42880.34310.89070.120*0.378 (11)
H16D0.42740.39591.00830.120*0.378 (11)
C170.5612 (12)0.3325 (9)0.9614 (9)0.179 (4)0.622 (11)
H17A0.61540.27880.97140.269*0.622 (11)
H17B0.60530.38780.95430.269*0.622 (11)
H17C0.48000.32550.88540.269*0.622 (11)
C17'0.6098 (10)0.3518 (14)1.0427 (18)0.194 (9)0.378 (11)
H17D0.64840.30931.11360.291*0.378 (11)
H17E0.63470.41481.07250.291*0.378 (11)
H17F0.63990.33700.98010.291*0.378 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.1169 (5)0.0600 (4)0.0808 (4)−0.0027 (3)0.0688 (4)−0.0042 (3)
O10.1334 (13)0.0518 (9)0.0645 (8)−0.0032 (8)0.0578 (9)−0.0075 (7)
N10.1108 (14)0.0461 (10)0.0552 (9)0.0177 (9)0.0447 (9)0.0053 (7)
N20.1050 (12)0.0456 (9)0.0533 (9)0.0107 (8)0.0445 (9)0.0074 (7)
N30.142 (5)0.057 (2)0.080 (3)0.027 (3)0.075 (4)0.017 (2)
N3'0.087 (6)0.043 (3)0.047 (4)0.017 (4)0.035 (4)0.007 (3)
C10.0655 (11)0.0501 (11)0.0567 (10)0.0086 (9)0.0237 (9)0.0051 (8)
C20.1061 (17)0.0522 (13)0.0719 (13)0.0070 (11)0.0378 (12)0.0010 (10)
C30.1158 (19)0.0537 (14)0.0965 (18)−0.0102 (13)0.0384 (16)−0.0010 (13)
C40.112 (2)0.0737 (18)0.109 (2)−0.0186 (15)0.0540 (17)0.0101 (15)
C50.1149 (19)0.0739 (17)0.1055 (19)−0.0128 (14)0.0718 (16)0.0048 (14)
C60.0756 (13)0.0568 (12)0.0731 (12)0.0011 (9)0.0393 (11)0.0019 (10)
C70.0678 (11)0.0480 (11)0.0457 (9)0.0132 (8)0.0222 (8)0.0056 (8)
C80.0749 (12)0.0507 (11)0.0504 (10)0.0084 (9)0.0329 (9)0.0028 (8)
C90.0841 (13)0.0485 (11)0.0482 (10)0.0082 (9)0.0343 (9)0.0024 (8)
C100.1190 (17)0.0495 (12)0.0595 (11)0.0226 (11)0.0538 (12)0.0090 (9)
C110.212 (8)0.070 (3)0.125 (5)0.050 (5)0.132 (6)0.024 (3)
C11'0.175 (13)0.053 (6)0.055 (6)0.052 (8)0.078 (8)0.018 (4)
C120.126 (4)0.135 (5)0.105 (3)0.038 (3)0.063 (3)−0.008 (3)
C12'0.204 (15)0.134 (14)0.103 (8)0.106 (12)0.065 (8)0.010 (7)
C130.131 (6)0.111 (6)0.210 (11)−0.033 (4)0.109 (7)−0.089 (7)
C13'0.221 (19)0.089 (10)0.040 (5)0.019 (10)0.028 (6)−0.016 (5)
C140.126 (7)0.059 (3)0.053 (4)0.006 (4)0.041 (5)0.013 (2)
C14'0.088 (6)0.038 (3)0.049 (6)0.004 (4)0.039 (5)0.002 (3)
C150.113 (5)0.155 (6)0.090 (5)−0.047 (4)0.022 (4)0.025 (4)
C15'0.078 (6)0.084 (5)0.080 (6)−0.012 (4)0.032 (5)0.014 (4)
C160.145 (7)0.237 (10)0.135 (8)−0.084 (6)0.058 (6)−0.015 (6)
C16'0.112 (6)0.109 (6)0.073 (5)−0.034 (5)0.034 (5)−0.001 (4)
C170.162 (9)0.259 (12)0.140 (7)−0.051 (8)0.088 (7)0.006 (8)
C17'0.157 (12)0.262 (19)0.145 (14)−0.116 (13)0.052 (10)0.013 (14)

Geometric parameters (Å, °)

N3—C111.482 (9)C12'—H12D0.9600
N3—H3A0.8600C12'—H12E0.9600
N3'—C11'1.387 (16)C12'—H12F0.9600
N3'—H3'0.8600C13—H13A0.9600
C1—C21.392 (3)C13—H13B0.9600
C1—C61.397 (3)C13—H13C0.9600
C1—C71.448 (3)C13'—H13D0.9600
C2—C31.374 (3)C13'—H13E0.9600
C2—H20.9300C13'—H13F0.9600
C3—C41.384 (4)C14—C151.507 (7)
C3—H30.9300C14—N21.544 (7)
C4—C51.364 (4)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C61.395 (3)C14'—N21.452 (9)
C5—H50.9300C14'—C15'1.528 (9)
C6—S11.743 (2)C14'—H14C0.9700
C7—N11.359 (3)C14'—H14D0.9700
C7—C81.369 (3)C15—C161.528 (7)
C8—C91.416 (3)C15—H15A0.9700
C8—S11.741 (2)C15—H15B0.9700
C9—O11.235 (2)C15'—C16'1.531 (8)
C9—N21.405 (2)C15'—H15C0.9700
C10—N11.308 (3)C15'—H15D0.9700
C10—N3'1.361 (10)C16—C171.461 (8)
C10—N21.389 (3)C16—H16A0.9700
C10—N31.394 (5)C16—H16B0.9700
C11—C131.490 (7)C16'—C17'1.493 (9)
C11—C121.508 (7)C16'—H16C0.9700
C11—H110.9800C16'—H16D0.9700
C11'—C13'1.499 (9)C17—H17A0.9600
C11'—C12'1.510 (9)C17—H17B0.9600
C11'—H11'0.9800C17—H17C0.9600
C12—H12A0.9600C17'—H17D0.9600
C12—H12B0.9600C17'—H17E0.9600
C12—H12C0.9600C17'—H17F0.9600
C8—S1—C690.27 (10)C12'—C11'—H11'102.4
C10—N1—C7115.57 (16)C11'—C12'—H12D109.5
C10—N2—C9121.65 (17)C11'—C12'—H12E109.5
C10—N2—C14'119.9 (6)H12D—C12'—H12E109.5
C9—N2—C14'118.0 (6)C11'—C12'—H12F109.5
C10—N2—C14121.9 (4)H12D—C12'—H12F109.5
C9—N2—C14115.1 (4)H12E—C12'—H12F109.5
C10—N3—C11122.4 (6)C11'—C13'—H13D109.5
C10—N3—H3A118.8C11'—C13'—H13E109.5
C11—N3—H3A118.8H13D—C13'—H13E109.5
C10—N3'—C11'121.0 (10)C11'—C13'—H13F109.5
C10—N3'—H3'119.5H13D—C13'—H13F109.5
C11'—N3'—H3'119.5H13E—C13'—H13F109.5
C2—C1—C6119.5 (2)C15—C14—N2116.4 (6)
C2—C1—C7129.1 (2)C15—C14—H14A108.2
C6—C1—C7111.39 (18)N2—C14—H14A108.2
C3—C2—C1119.2 (2)C15—C14—H14B108.2
C3—C2—H2120.4N2—C14—H14B108.2
C1—C2—H2120.4H14A—C14—H14B107.3
C2—C3—C4121.1 (2)N2—C14'—C15'103.6 (7)
C2—C3—H3119.5N2—C14'—H14C111.0
C4—C3—H3119.5C15'—C14'—H14C111.0
C5—C4—C3120.5 (2)N2—C14'—H14D111.0
C5—C4—H4119.7C15'—C14'—H14D111.0
C3—C4—H4119.7H14C—C14'—H14D109.0
C4—C5—C6119.4 (3)C14—C15—C16111.7 (6)
C4—C5—H5120.3C14—C15—H15A109.3
C6—C5—H5120.3C16—C15—H15A109.3
C5—C6—C1120.2 (2)C14—C15—H15B109.3
C5—C6—S1127.07 (19)C16—C15—H15B109.3
C1—C6—S1112.71 (16)H15A—C15—H15B107.9
N1—C7—C8124.20 (18)C14'—C15'—C16'107.1 (7)
N1—C7—C1123.82 (17)C14'—C15'—H15C110.3
C8—C7—C1111.94 (18)C16'—C15'—H15C110.3
C7—C8—C9121.09 (18)C14'—C15'—H15D110.3
C7—C8—S1113.69 (15)C16'—C15'—H15D110.3
C9—C8—S1125.23 (15)H15C—C15'—H15D108.5
O1—C9—N2120.20 (18)C17—C16—C15111.5 (7)
O1—C9—C8126.63 (18)C17—C16—H16A109.3
N2—C9—C8113.17 (16)C15—C16—H16A109.3
N1—C10—N3'113.4 (6)C17—C16—H16B109.3
N1—C10—N2124.28 (18)C15—C16—H16B109.3
N3'—C10—N2119.7 (5)H16A—C16—H16B108.0
N1—C10—N3120.3 (3)C17'—C16'—C15'108.7 (7)
N2—C10—N3114.6 (3)C17'—C16'—H16C109.9
N3—C11—C13107.2 (6)C15'—C16'—H16C109.9
N3—C11—C12106.0 (6)C17'—C16'—H16D109.9
C13—C11—C12111.5 (5)C15'—C16'—H16D109.9
N3—C11—H11110.7H16C—C16'—H16D108.3
C13—C11—H11110.7C16'—C17'—H17D109.5
C12—C11—H11110.7C16'—C17'—H17E109.5
N3'—C11'—C13'113.8 (11)H17D—C17'—H17E109.5
N3'—C11'—C12'122.5 (11)C16'—C17'—H17F109.5
C13'—C11'—C12'110.1 (8)H17D—C17'—H17F109.5
N3'—C11'—H11'102.4H17E—C17'—H17F109.5
C13'—C11'—H11'102.4
C6—C1—C2—C30.3 (3)C14—C15—C16—C17−84.7 (12)
C7—C1—C2—C3−178.9 (2)N2—C14'—C15'—C16'178.1 (8)
C1—C2—C3—C4−0.2 (4)C14'—C15'—C16'—C17'172.6 (15)
C2—C3—C4—C5−0.1 (4)N3'—C10—N1—C7−160.1 (5)
C3—C4—C5—C60.3 (4)N2—C10—N1—C71.3 (3)
C4—C5—C6—C1−0.1 (4)N3—C10—N1—C7170.8 (4)
C4—C5—C6—S1179.2 (2)C8—C7—N1—C100.5 (3)
C2—C1—C6—C5−0.2 (3)C1—C7—N1—C10178.05 (18)
C7—C1—C6—C5179.2 (2)N1—C10—N2—C9−2.2 (3)
C2—C1—C6—S1−179.60 (17)N3'—C10—N2—C9158.1 (6)
C7—C1—C6—S1−0.2 (2)N3—C10—N2—C9−172.3 (4)
C2—C1—C7—N11.2 (3)N1—C10—N2—C14'−173.8 (6)
C6—C1—C7—N1−178.14 (17)N3'—C10—N2—C14'−13.5 (8)
C2—C1—C7—C8178.9 (2)N3—C10—N2—C14'16.1 (7)
C6—C1—C7—C8−0.4 (2)N1—C10—N2—C14164.2 (4)
N1—C7—C8—C9−1.5 (3)N3'—C10—N2—C14−35.5 (7)
C1—C7—C8—C9−179.22 (17)N3—C10—N2—C14−5.9 (6)
N1—C7—C8—S1178.56 (15)O1—C9—N2—C10−179.5 (2)
C1—C7—C8—S10.8 (2)C8—C9—N2—C101.1 (3)
C7—C8—C9—O1−178.78 (19)O1—C9—N2—C14'−7.7 (6)
S1—C8—C9—O11.2 (3)C8—C9—N2—C14'172.9 (5)
C7—C8—C9—N20.5 (3)O1—C9—N2—C1413.3 (4)
S1—C8—C9—N2−179.48 (14)C8—C9—N2—C14−166.1 (4)
N1—C10—N3—C110.8 (8)C15'—C14'—N2—C10−80.9 (8)
N3'—C10—N3—C11−81.1 (18)C15'—C14'—N2—C9107.1 (8)
N2—C10—N3—C11171.4 (5)C15'—C14'—N2—C1421 (2)
C10—N3—C11—C1395.4 (8)C15—C14—N2—C10−82.4 (8)
C10—N3—C11—C12−145.4 (7)C15—C14—N2—C984.8 (8)
N1—C10—N3'—C11'−25.1 (12)C15—C14—N2—C14'−172 (3)
N2—C10—N3'—C11'172.6 (9)C7—C8—S1—C6−0.77 (16)
N3—C10—N3'—C11'86.3 (17)C9—C8—S1—C6179.24 (19)
C10—N3'—C11'—C13'161.8 (14)C5—C6—S1—C8−178.8 (2)
C10—N3'—C11'—C12'−61.6 (18)C1—C6—S1—C80.55 (16)
N2—C14—C15—C16178.0 (7)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14A···O1i0.972.523.478 (9)171
N3—H3A···O1i0.862.463.140 (6)137

Symmetry codes: (i) x, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2396).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2001). SHELXTL (Version 6.12), SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chambhare, R. V., Khadse, B. G., Bobde, A. S. & Bahekar, R. H. (2003). Eur. J. Med. Chem.38, 89–100. [PubMed]
  • Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem.69, 8366–8371. [PubMed]
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography