PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o32.
Published online 2007 December 6. doi:  10.1107/S1600536807048374
PMCID: PMC2914992

Bis(2-methyl­imidazolium) chloranilate

Abstract

The asymmetric unit of the title structure, 2C4H7N2 +·C6Cl2O4 2−, consists of one 2-methyl­imidazolium cation and one-half of a chloranilate anion, the formula unit being generated by crystallographic inversion symmetry. N—H(...)O hydrogen bonds link the ions into a two-dimensional framework parallel to the (102) plane. No π–π stacking or C—H(...)π inter­actions are observed in the crystal structure.

Related literature

For related literature, see: Bernstein et al. (1995 [triangle]); Ishida & Kashino (2001 [triangle]); Ishida (2004a [triangle],b [triangle]); Meng & Qian (2006 [triangle]); Min et al. (2006 [triangle]); Wang & Wei (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o32-scheme1.jpg

Experimental

Crystal data

  • 2C4H7N2 +·C6Cl2O4 2−
  • M r = 373.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o32-efi1.jpg
  • a = 8.5092 (10) Å
  • b = 7.6658 (9) Å
  • c = 12.7204 (16) Å
  • β = 91.204 (2)°
  • V = 829.57 (17) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 296 (2) K
  • 0.12 × 0.05 × 0.02 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.942, T max = 0.992
  • 9164 measured reflections
  • 1880 independent reflections
  • 1150 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.132
  • S = 1.01
  • 1880 reflections
  • 116 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807048374/lh2514sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807048374/lh2514Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge support from the Key Project of the National Natural Science Foundation of China (grant No. 20490210) and from National Natural Science Foundation of China (grant Nos. 10574047 and 10574048). This work was also supported by the National 973 Project under grant No. 2006CB921600 and by the Programme on Major International Cooperation Projects (grant No. 2003DF000034).

supplementary crystallographic information

Comment

Chloranilic acid (CA) is a potential bridging ligand which is often used in the synthesis of metal organic frameworks (Min et al., 2006). Also some organic salts containing chloranilate have been reported recently (Ishida, 2004a,b; Ishida & Kashino, 2001; Wang & Wei, 2005, Meng & Qian, 2006). In the hydrothermal process using equimolar amounts of CA, 2-Methylimidazole (2-MeIm) and copper nitrate, we unexpectedly obtained the title compound, and report herein its crystal structure.

The asymmetric unit contains one 2-methylimidazolium cation, half of a chloranilate anion the formula unit being generated by crystallogrphic inversion symmetry (Fig. 1). A proton has been transferred from the hydroxyl group in CA to the 2-MeIm N atom, forming the 1:2 organic salt.

In the crystal structure, by a combination of three N—H···O hydrogen bonds (Table 1) the molecules are linked into a two-dimensional framework (Fig. 2) built from the R21(5) and R68(32) rings (Bernstein et al., 1995) running parallel to the (102) plane. Two such networks pass through the cell and analysis using PLATON (Spek, 2003) shows that there are no direction-specific interactions such as π–π and C–H···π interactions observed in the packing of the structure.

Experimental

All the reagents and solvents were used as obtained without further purification. Equivalent molar amount of CA (0.2 mmol, 41.4 mg), 2-MeIm (0.2 mmol, 16.2 mg) and Cu(NO3)2.3(H2O)(0.2 mmol, 48 mg) in 10 ml water solvent sealed in a 25 ml Teflon-lined autoclave. The mixture was heated to 393 K and maintained for 48 h. After slowly cooling to room temperature with the rate of 5°/h, dark red crystals suitable for single-crystal X-ray diffraction analysis were obtained. The crystals were filtered and washed with distilled water and dried in air.

Refinement

H atoms bonded to carbon atoms were located at the geometrical positions [C—H = 0.96 Å (methyl) or 0.93 Å (aromatic), and Uiso(H) = 1.5Ueq (methyl) or 1.2Ueq (aromatic). H atoms attached to N atoms were located in difference fourier maps and N—H distance refined freely and their Uiso values set 1.2 times of their carrier atoms.

Figures

Fig. 1.
Molecular structure, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H-bonds are shown as dashed lines.
Fig. 2.
Part of the crystal structure, showing the formation of the two-dimensional network by N—H···O hydrogen bonds. H-bonds are shown as dashed lines.

Crystal data

2C4H7N2+·C6Cl2O42–F000 = 384
Mr = 373.20Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 863 reflections
a = 8.5092 (10) Åθ = 2.4–19.5º
b = 7.6658 (9) ŵ = 0.42 mm1
c = 12.7204 (16) ÅT = 296 (2) K
β = 91.204 (2)ºPlate, red
V = 829.57 (17) Å30.12 × 0.05 × 0.02 mm
Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer1150 reflections with I > 2σ(I)
Radiation source: fine focus sealed Siemens Mo tubeRint = 0.067
Monochromator: graphiteθmax = 27.5º
0.3° wide ω exposures scansθmin = 2.4º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.942, Tmax = 0.992k = −9→9
9164 measured reflectionsl = −16→16
1880 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132  w = 1/[σ2(Fo2) + (0.0635P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1880 reflectionsΔρmax = 0.28 e Å3
116 parametersΔρmin = −0.23 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.9935 (3)0.3795 (3)0.1722 (2)0.0386 (7)
C20.8754 (4)0.2917 (4)0.0266 (2)0.0472 (7)
H20.85910.2450−0.04030.057*
C30.7656 (3)0.3549 (4)0.0898 (2)0.0457 (7)
H30.65820.36090.07510.055*
C41.1147 (4)0.4178 (5)0.2537 (2)0.0614 (9)
H4A1.16630.31160.27450.092*
H4B1.06610.46950.31360.092*
H4C1.19050.49740.22600.092*
C50.5122 (3)0.3827 (3)0.41260 (19)0.0346 (6)
C60.6258 (3)0.5121 (3)0.42497 (17)0.0310 (6)
C70.6127 (3)0.6382 (3)0.51780 (19)0.0336 (6)
Cl10.52835 (9)0.23376 (10)0.31053 (5)0.0543 (3)
N10.8402 (3)0.4086 (3)0.17996 (17)0.0404 (6)
H1A0.794 (3)0.452 (3)0.246 (2)0.049*
N21.0162 (3)0.3091 (3)0.07907 (18)0.0419 (6)
H2A1.105 (4)0.275 (4)0.066 (2)0.050*
O10.7415 (2)0.5352 (2)0.36643 (13)0.0413 (5)
O20.7146 (2)0.7533 (3)0.52727 (15)0.0512 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0307 (16)0.0390 (16)0.0466 (16)−0.0006 (13)0.0121 (12)−0.0012 (12)
C20.0474 (19)0.0524 (18)0.0419 (15)−0.0007 (15)0.0054 (14)−0.0076 (14)
C30.0331 (16)0.0542 (18)0.0500 (17)0.0010 (14)0.0045 (14)−0.0066 (14)
C40.0455 (19)0.074 (2)0.065 (2)0.0006 (17)−0.0009 (16)−0.0138 (17)
C50.0292 (14)0.0381 (15)0.0370 (13)−0.0020 (12)0.0105 (11)−0.0084 (11)
C60.0245 (14)0.0386 (15)0.0299 (12)0.0022 (11)0.0042 (11)0.0018 (11)
C70.0285 (14)0.0361 (15)0.0363 (13)−0.0010 (12)0.0059 (11)0.0007 (11)
Cl10.0482 (5)0.0624 (5)0.0532 (5)−0.0135 (4)0.0227 (4)−0.0260 (4)
N10.0347 (14)0.0444 (14)0.0428 (13)0.0027 (11)0.0158 (11)−0.0063 (11)
N20.0347 (14)0.0450 (15)0.0468 (13)0.0075 (11)0.0177 (12)−0.0038 (11)
O10.0315 (11)0.0521 (12)0.0409 (10)−0.0071 (9)0.0177 (8)−0.0033 (9)
O20.0441 (12)0.0547 (13)0.0557 (12)−0.0212 (10)0.0237 (10)−0.0174 (10)

Geometric parameters (Å, °)

C1—N21.319 (3)C4—H4C0.9600
C1—N11.329 (3)C5—C61.392 (3)
C1—C41.477 (4)C5—C7i1.406 (3)
C2—C31.337 (4)C5—Cl11.737 (2)
C2—N21.366 (4)C6—O11.259 (3)
C2—H20.9300C6—C71.532 (3)
C3—N11.363 (3)C7—O21.242 (3)
C3—Cl13.613 (3)C7—C5i1.406 (3)
C3—H30.9300N1—H1A0.99 (3)
C4—H4A0.9600N2—H2A0.82 (3)
C4—H4B0.9600
N2—C1—N1107.3 (2)H4B—C4—H4C109.5
N2—C1—C4126.8 (3)C6—C5—C7i122.8 (2)
N1—C1—C4125.9 (3)C6—C5—Cl1119.15 (18)
C3—C2—N2106.7 (3)C7i—C5—Cl1117.96 (19)
C3—C2—H2126.7O1—C6—C5125.7 (2)
N2—C2—H2126.7O1—C6—C7115.9 (2)
C2—C3—N1107.3 (3)C5—C6—C7118.4 (2)
C2—C3—Cl1141.6 (2)O2—C7—C5i123.7 (2)
N1—C3—Cl171.46 (15)O2—C7—C6117.5 (2)
C2—C3—H3126.4C5i—C7—C6118.8 (2)
N1—C3—H3126.4C5—Cl1—C3117.80 (10)
Cl1—C3—H366.9C1—N1—C3109.1 (2)
C1—C4—H4A109.5C1—N1—H1A121.6 (15)
C1—C4—H4B109.5C3—N1—H1A129.0 (15)
H4A—C4—H4B109.5C1—N2—C2109.6 (2)
C1—C4—H4C109.5C1—N2—H2A118 (2)
H4A—C4—H4C109.5C2—N2—H2A132 (2)
N2—C2—C3—N1−0.4 (3)C7i—C5—Cl1—C3161.62 (18)
N2—C2—C3—Cl1−82.1 (4)C2—C3—Cl1—C5135.2 (3)
C7i—C5—C6—O1178.7 (2)N1—C3—Cl1—C540.6 (2)
Cl1—C5—C6—O11.6 (4)N2—C1—N1—C30.2 (3)
C7i—C5—C6—C7−0.7 (4)C4—C1—N1—C3−179.3 (3)
Cl1—C5—C6—C7−177.85 (17)C2—C3—N1—C10.2 (3)
O1—C6—C7—O20.9 (3)Cl1—C3—N1—C1139.7 (2)
C5—C6—C7—O2−179.6 (2)N1—C1—N2—C2−0.4 (3)
O1—C6—C7—C5i−178.8 (2)C4—C1—N2—C2179.1 (3)
C5—C6—C7—C5i0.7 (4)C3—C2—N2—C10.5 (3)
C6—C5—Cl1—C3−21.1 (3)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.99 (3)1.73 (3)2.713 (3)172 (2)
N2—H2A···O2ii0.82 (3)1.96 (3)2.719 (3)152 (3)
N2—H2A···O1ii0.82 (3)2.40 (3)3.014 (3)132 (3)

Symmetry codes: (ii) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2514).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2001). SAINT-Plus (Version 6.45) and SMART (Version 5.628). Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Ishida, H. (2004a). Acta Cryst. E60, o2506–o2508.
  • Ishida, H. (2004b). Acta Cryst. E60, o974–o976.
  • Ishida, H. & Kashino, S. (2001). Acta Cryst. C57, 476–479. [PubMed]
  • Meng, X.-G. & Qian, J.-L. (2006). Acta Cryst. E62, o4178–o4180.
  • Min, S. K., Rheingold, A. L., DiPasquale, A. & Miller, J. S. (2006). Inorg. Chem.45, 6135–6137. [PubMed]
  • Sheldrick, G. M. (1996). SADABS Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Wang, Z.-L. & Wei, L.-H. (2005). Acta Cryst. E61, o3129–o3130.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography