PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o31.
Published online 2007 December 6. doi:  10.1107/S1600536807062423
PMCID: PMC2914991

1,4-Bis(piperidin-1-ylcarbon­yl)benzene

Abstract

The title compound, C18H20N2O2, has been synthesized by the reaction of terephthaloyl chloride and 1,2,3,6-tetra­hydro­pyridine. This compound crystallizes as discrete mol­ecular species disposed about a crystallographic centre of symmetry, such that half the mol­ecule constitutes the asymmetric unit. The structure shows an envelope conformation for the dehydro­piperidine ring with the amide carbonyl twisted out of the benzene ring plane by 57.3 (2)°.

Related literature

For background literature, see: Pang et al. (2006 [triangle]). For related structures, see: Jones et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o31-scheme1.jpg

Experimental

Crystal data

  • C18H20N2O2
  • M r = 296.36
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o31-efi1.jpg
  • a = 9.1255 (19) Å
  • b = 10.060 (3) Å
  • c = 8.6941 (16) Å
  • β = 106.991 (14)°
  • V = 763.3 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 (2) K
  • 0.35 × 0.30 × 0.15 mm

Data collection

  • Rigaku AFC-7R diffractometer
  • Absorption correction: none
  • 1985 measured reflections
  • 1753 independent reflections
  • 1122 reflections with I > 2σ(I)
  • R int = 0.022
  • 3 standard reflections every 150 reflections intensity decay: 0.9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.124
  • S = 1.01
  • 1753 reflections
  • 100 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: MSC/AFC7 Diffractometer Control (Molecular Structure Corporation, 1999 [triangle]); cell refinement: MSC/AFC7 Diffractometer Control; data reduction: TEXSAN (Molecular Structure Corporation, 2001 [triangle]); program(s) used to solve structure: TEXSAN; program(s) used to refine structure: TEXSAN, SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: TEXSAN, PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062423/sj2448sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062423/sj2448Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support of this work by the Nanoscale Science and Technology Centre, CSIRO Materials Science and Engineering Division, and Griffith University. The award of a PhD scholarship (to LA) from the CRC for Wood Innovation is gratefully acknowledged.

supplementary crystallographic information

Comment

Derivatives of terephthalic acid are widely used in a range of polymer applications (Pang et al., 2006). As part of our work on the synthesis of these compounds for use in new coating technologies, we have synthesized and determined the solid state structure of the title compound (I). This compound crystallizes as discrete molecular species (Fig. 1) disposed about a crystallographic centre of symmetry such that half the molecule consitutes the asymmetric unit of the crystal lattice. The bond lengths and bond angles in (I) are in accord with values for similar structures reported in the literature (Jones et al., 2002). The tertiary nitrogen lies in the C1—C3—C7 plane with the sum of the C—N—C angles 359.3°. The amide plane is twisted out of the plane of the central phenyl ring as reflected in the O1—C1—C8—C10 torsion angle of -57.6 (2)°. C7 approaches coplanarity with amide plane with C7—N1—C1—O1 - 4.3 (2)°. C3 bends out of this plane with C3—N1—C1—C8 = -16.4 (2)° to give an envelope conformation to the dehydropiperidine ring. A weak intermolecular C—H···O interaction is observed between C9—H9 and the carbonyl oxygen (Table 1).

Experimental

1,2,3,6-tetrahydropyridine (494.4 ml, 5.418 mm0l) was added to a solution of terephthaloyl chloride (500 mg, 2.46 mmol) in toluene (50 ml) under an N2 atmosphere with stirring. The reaction mixture was stirred and heated under reflux for 24 hr. On cooling to room temperature the mixture was washed with aqueous acid (2M HCl) and then aqueous base (2M NaOH) followed by two water washes with the organic layer collected and dried (MgSO4). Removal of the solvent under vacuum resulted in isolation of a solid white product. Recrystallization from ethanol resulted in the formation of small white crystals (Yield 601 mg, 82.4%).

Refinement

H atoms attached to carbon were constrained as riding atoms, with C–H set to 0.95 Å. Uiso(H) values were set to 1.2Ueq of the parent atom.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Primed atoms were generated by symmetry (-x, -y, 1 - z).

Crystal data

C18H20N2O2F000 = 316
Mr = 296.36Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 9.1255 (19) Åθ = 12.6–16.9º
b = 10.060 (3) ŵ = 0.09 mm1
c = 8.6941 (16) ÅT = 295 (2) K
β = 106.991 (14)ºPlate, colourless
V = 763.3 (3) Å30.35 × 0.30 × 0.15 mm
Z = 2

Data collection

Rigaku AFC7R diffractometerRint = 0.022
Radiation source: Rigaku rotating anodeθmax = 27.5º
Monochromator: graphiteθmin = 2.9º
T = 295 Kh = −5→11
ω–2θ scansk = 0→13
Absorption correction: nonel = −11→10
1985 measured reflections3 standard reflections
1753 independent reflections every 150 reflections
1122 reflections with I > 2σ(I) intensity decay: 0.9%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.124  w = 1/[σ2(Fo2) + (0.0519P)2 + 0.1363P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1753 reflectionsΔρmax = 0.16 e Å3
100 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Experimental. The scan width was (1.63 + 0.30tanθ)° with an ω scan speed of 16° per minute (up to 4 scans to achieve I/σ(I) > 10). Stationary background counts were recorded at each end of the scan, and the scan time:background time ratio was 2:1.
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.34253 (15)0.20263 (14)0.59031 (15)0.0576 (5)
N10.33853 (15)0.09638 (14)0.36082 (16)0.0378 (4)
C10.28168 (18)0.12259 (16)0.48421 (18)0.0360 (5)
C30.2956 (2)−0.01623 (17)0.2505 (2)0.0417 (5)
C40.2517 (3)0.0308 (2)0.0776 (2)0.0584 (7)
C50.3692 (3)0.1256 (2)0.0550 (2)0.0660 (8)
C60.4691 (3)0.1846 (2)0.1752 (3)0.0575 (7)
C70.4706 (2)0.17209 (18)0.3463 (2)0.0448 (6)
C80.13664 (17)0.05471 (15)0.48833 (17)0.0327 (4)
C90.00064 (18)0.07421 (17)0.36538 (17)0.0369 (5)
C10−0.13454 (17)0.01931 (17)0.37753 (17)0.0364 (4)
H3A0.38000−0.075600.268800.0500*
H3B0.21100−0.061000.269600.0500*
H4A0.24540−0.043400.008500.0700*
H4B0.155000.074000.052300.0700*
H50.371800.14410−0.051300.0790*
H60.545200.238600.151700.0690*
H7A0.468100.258400.389800.0540*
H7B0.561900.128000.404900.0540*
H90.000800.125100.273400.0440*
H10−0.228100.033300.292000.0420*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0557 (8)0.0690 (9)0.0491 (7)−0.0176 (7)0.0168 (6)−0.0240 (7)
N10.0370 (7)0.0413 (8)0.0384 (7)−0.0063 (6)0.0161 (6)−0.0035 (6)
C10.0360 (8)0.0389 (9)0.0324 (8)0.0014 (7)0.0089 (6)−0.0019 (7)
C30.0473 (10)0.0410 (9)0.0425 (9)−0.0050 (8)0.0219 (8)−0.0055 (8)
C40.0721 (14)0.0630 (13)0.0404 (10)−0.0048 (11)0.0168 (9)−0.0049 (9)
C50.0999 (18)0.0626 (13)0.0434 (11)−0.0070 (13)0.0331 (11)0.0084 (10)
C60.0686 (14)0.0517 (11)0.0640 (12)−0.0070 (10)0.0378 (11)0.0114 (10)
C70.0379 (9)0.0466 (10)0.0517 (10)−0.0053 (7)0.0159 (8)0.0057 (8)
C80.0322 (8)0.0387 (8)0.0284 (7)0.0041 (6)0.0109 (6)−0.0027 (6)
C90.0394 (9)0.0463 (9)0.0258 (7)0.0052 (7)0.0109 (6)0.0039 (7)
C100.0314 (7)0.0481 (9)0.0288 (7)0.0059 (7)0.0072 (6)0.0007 (7)

Geometric parameters (Å, °)

O1—C11.228 (2)C9—C101.384 (2)
N1—C11.347 (2)C3—H3A0.9500
N1—C31.462 (2)C3—H3B0.9500
N1—C71.462 (2)C4—H4A0.9500
C1—C81.499 (2)C4—H4B0.9500
C3—C41.514 (2)C5—H50.9500
C4—C51.490 (4)C6—H60.9500
C5—C61.311 (3)C7—H7A0.9500
C6—C71.489 (3)C7—H7B0.9500
C8—C91.395 (2)C9—H90.9500
C8—C10i1.389 (2)C10—H100.9600
O1···C9ii3.290 (2)H3B···C82.4900
O1···H7A2.4200H3B···C92.6800
O1···H3Aiii2.7800H3B···H7Aix2.5600
O1···H10i2.9000H4A···O1ix2.7400
O1···H4Aiv2.7400H4A···H10x2.5700
O1···H9ii2.5100H4B···H7Av2.5200
C3···C93.262 (3)H6···C10iv2.9700
C9···C33.262 (3)H6···C8xi2.7800
C9···O1v3.290 (2)H6···C9xi3.0500
C1···H7Biii2.9200H7A···O12.4200
C6···H3A2.9300H7A···H3Biv2.5600
C6···H10vi3.0600H7A···H4Bii2.5200
C8···H3B2.4900H7B···C10vi3.0500
C8···H6vii2.7800H7B···H10vi2.5800
C9···H3B2.6800H7B···C1iii2.9200
C9···H6vii3.0500H9···O1v2.5100
C10···H7Bviii3.0500H10···C6viii3.0600
C10···H6ix2.9700H10···H7Bviii2.5800
H3A···C62.9300H10···O1i2.9000
H3A···O1iii2.7800H10···H4Ax2.5700
C1—N1—C3125.62 (14)H3A—C3—H3B109.00
C1—N1—C7119.07 (14)C3—C4—H4A109.00
C3—N1—C7114.63 (14)C3—C4—H4B109.00
O1—C1—N1122.12 (16)C5—C4—H4A109.00
O1—C1—C8119.30 (15)C5—C4—H4B109.00
N1—C1—C8118.56 (14)H4A—C4—H4B109.00
N1—C3—C4110.59 (14)C4—C5—H5119.00
C3—C4—C5109.82 (17)C6—C5—H5119.00
C4—C5—C6122.97 (19)C5—C6—H6118.00
C5—C6—C7124.0 (2)C7—C6—H6118.00
N1—C7—C6111.29 (16)N1—C7—H7A109.00
C1—C8—C9120.77 (14)N1—C7—H7B109.00
C1—C8—C10i119.56 (14)C6—C7—H7A109.00
C9—C8—C10i119.44 (15)C6—C7—H7B109.00
C8—C9—C10119.92 (14)H7A—C7—H7B109.00
C8i—C10—C9120.64 (14)C8—C9—H9120.00
N1—C3—H3A109.00C10—C9—H9120.00
N1—C3—H3B109.00C9—C10—H10119.00
C4—C3—H3A109.00C8i—C10—H10120.00
C4—C3—H3B109.00
C3—N1—C1—O1165.61 (16)N1—C1—C8—C10i124.35 (17)
C3—N1—C1—C8−16.4 (2)N1—C3—C4—C547.6 (2)
C7—N1—C1—O1−4.3 (2)C3—C4—C5—C6−16.9 (3)
C7—N1—C1—C8173.66 (14)C4—C5—C6—C7−4.6 (4)
C1—N1—C3—C4128.43 (19)C5—C6—C7—N1−5.4 (3)
C7—N1—C3—C4−61.2 (2)C1—C8—C9—C10−174.84 (15)
C1—N1—C7—C6−150.58 (16)C10i—C8—C9—C10−0.4 (2)
C3—N1—C7—C638.4 (2)C1—C8—C10i—C9i174.91 (15)
O1—C1—C8—C9116.88 (18)C9—C8—C10i—C9i0.4 (2)
O1—C1—C8—C10i−57.6 (2)C8—C9—C10—C8i0.4 (2)
N1—C1—C8—C9−61.2 (2)

Symmetry codes: (i) −x, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1, −y, −z+1; (iv) −x+1/2, y+1/2, −z+1/2; (v) x−1/2, −y+1/2, z−1/2; (vi) x+1, y, z; (vii) x−1/2, −y+1/2, z+1/2; (viii) x−1, y, z; (ix) −x+1/2, y−1/2, −z+1/2; (x) −x, −y, −z; (xi) x+1/2, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O1v0.95002.51003.290 (2)140.00

Symmetry codes: (v) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2448).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Jones, P. G., Ossowski, J. & Kus, P. (2002). Z. Naturforsch. Teil B, 57, 914–921.
  • Molecular Structure Corporation (1999). MSC/AFC7 Diffractometer Control Version 1.02. MSC, The Woodlands, Texas, USA.
  • Molecular Structure Corporation. (2001). TEXSAN Version 1.06. MSC, The Woodlands, Texas, USA.
  • Pang, K., Kotek, R. & Tonelli, A. (2006). Prog. Polym. Sci.31, 1009–1037.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography