PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o27.
Published online 2007 December 6. doi:  10.1107/S1600536807060989
PMCID: PMC2914988

8-Meth­oxy-3-(4-methyl­benzyl­idene)-6-(prop-1-en­yl)chroman-4-one

Abstract

In the title compound, C21H20O3, the tolyl ring makes a dihedral angle of 31.11 (6)° with the benzene ring of the chromanone unit. The pyrone ring adopts a half-chair conformation. The mol­ecular structure is stabilized by a weak intra­molecular C—H(...)O inter­action and the crystal packing is stabilized by weak inter­molecular C—H(...)O inter­actions and a C—H(...)π inter­action.

Related literature

For related lituerature, see: Puviarasan et al. (1998 [triangle]); Tillekeratne et al. (2001 [triangle]); Nissa et al. (2001 [triangle]); Kang et al. (2004 [triangle]); Wu, Xu, Wan et al. (2005 [triangle]); Wu, Xu, Zhou et al. (2005 [triangle]); Schollmeyer et al. (2005 [triangle]); Suresh et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o27-scheme1.jpg

Experimental

Crystal data

  • C21H20O3
  • M r = 320.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o27-efi1.jpg
  • a = 6.8550 (5) Å
  • b = 11.6264 (8) Å
  • c = 20.9669 (14) Å
  • β = 96.947 (1)°
  • V = 1658.8 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.18 × 0.11 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.984, T max = 0.995
  • 17310 measured reflections
  • 2941 independent reflections
  • 2054 reflections with I > 2σ(I)
  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.120
  • S = 1.05
  • 2941 reflections
  • 220 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807060989/is2242sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060989/is2242Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The chromanone moiety present in the title compound consisting of the pyrone ring and benzene ring plays an important role in many areas of medicines such as inhibition of HIV replication (Tillekeratne et al., 2001). The naturally occurring classes of compounds to which they belong, the benzylidene chroman-4-ones, have identified as a potential source of new anti-fungal agents (Kang et al., 2004).

The geometric parameters in the title compound agree with the reported values of similar structure (Puviarasan et al., 1998; Wu, Xu, Wan et al., 2005; Wu, Xu, Zhou et al., 2005; Schollmeyer et al., 2005; Nissa et al., 2001; Suresh et al., 2007). The methylphenyl ring makes a dihedral angle of 31.11 (6)° with the benzene ring of the chromanone unit.

The molecular structure is stabilized by a weak intramolecular C—H···O interaction and the crystal packing is stabilized by weak intermolecular C—H···O interactions and a C—H···π interaction involving the C11/C14—C17/C12 (Centroid Cg) ring.

Experimental

Baylis-Hillman reaction of p-tolualdehyde with methyl acrylate afforded methyl-3-hydroxy-3-(p-tolyl-)-2-methyene propanoate, which was converted to methyl-(2,2)–2-bromomethyl-3-(p-tolyl)-prop-2-enoate on treatment with hydrobromic acid in presence of concentrated sulfuric acid. The product was treated with isoeugenol in presence of potassium carbonate and acetone to give methyl-3-(p-tolyl)-2-(2-methoxy-4-prop-1-enyl)-phenoxy methyl-prop-2-enoate, which was hydrolysed by alkali solution to give the prop-2-enoic acid. This acid was cyclized with trifluoro acetic anhydride in dichloromethane to yield 3-(4-methyl)benzylidine-6-prop-1-enyl-8-methoxyhroman-4-one.

Refinement

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic CH, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for CH3.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
Fig. 2.
A partial packing diagram of (I), viewed down the a axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.

Crystal data

C21H20O3Z = 4
Mr = 320.37F000 = 680
Monoclinic, P21/nDx = 1.283 Mg m3
Hall symbol: -P 2ynMo Kα radiation λ = 0.71073 Å
a = 6.8550 (5) Åθ = 1.9–27.2º
b = 11.6264 (8) ŵ = 0.09 mm1
c = 20.9669 (14) ÅT = 293 (2) K
β = 96.947 (1)ºPrism, yellow
V = 1658.8 (2) Å30.18 × 0.11 × 0.06 mm

Data collection

Bruker APEXII CCD diffractometer2941 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.039
T = 293(2) Kθmax = 25.1º
ω scanθmin = 2.0º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.984, Tmax = 0.995k = −13→13
17310 measured reflectionsl = −24→24

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.120  w = 1/[σ2(Fo2) + (0.0565P)2 + 0.331P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
2941 reflectionsΔρmax = 0.17 e Å3
220 parametersΔρmin = −0.16 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.72176 (17)0.14365 (10)0.15211 (6)0.0560 (4)
C110.5481 (2)0.19760 (14)0.13450 (8)0.0431 (4)
O30.45043 (19)0.02250 (10)0.08579 (7)0.0622 (4)
O20.66403 (19)0.48556 (10)0.18481 (7)0.0616 (4)
C170.3351 (3)0.36251 (16)0.12538 (8)0.0484 (5)
H170.31310.43910.13520.058*
C120.5149 (2)0.31169 (14)0.14850 (8)0.0431 (4)
C140.4016 (3)0.13375 (14)0.09710 (9)0.0467 (4)
C130.6739 (2)0.38058 (14)0.18298 (8)0.0439 (4)
C90.8458 (2)0.31532 (14)0.21405 (8)0.0429 (4)
C150.2262 (3)0.18653 (16)0.07531 (9)0.0519 (5)
H150.12860.14420.05110.062*
C160.1906 (3)0.30248 (16)0.08862 (9)0.0498 (5)
C80.9929 (2)0.37410 (15)0.24703 (8)0.0461 (4)
H80.97490.45340.24680.055*
C190.0062 (3)0.36065 (18)0.06302 (10)0.0593 (5)
H19−0.00810.43550.07740.071*
C11.1769 (2)0.33551 (15)0.28342 (8)0.0436 (4)
C20−0.1372 (3)0.32230 (19)0.02369 (10)0.0652 (6)
H20−0.12600.24730.00920.078*
C100.8380 (3)0.18735 (15)0.20825 (10)0.0562 (5)
H10A0.97110.15880.20870.067*
H10B0.78660.15650.24580.067*
C21.3272 (3)0.41550 (16)0.29596 (9)0.0545 (5)
H21.30650.49060.28140.065*
C41.5439 (3)0.27688 (17)0.35240 (9)0.0506 (5)
C31.5067 (3)0.38657 (17)0.32947 (9)0.0568 (5)
H31.60420.44230.33660.068*
C61.2140 (3)0.22494 (16)0.30760 (9)0.0532 (5)
H61.11640.16910.30120.064*
C51.3935 (3)0.19739 (17)0.34087 (10)0.0575 (5)
H51.41440.12270.35610.069*
C21−0.3191 (3)0.3854 (2)−0.00093 (11)0.0740 (7)
H21A−0.31290.46220.01600.111*
H21B−0.43100.34640.01220.111*
H21C−0.33090.3884−0.04700.111*
C71.7370 (3)0.2454 (2)0.39040 (10)0.0685 (6)
H7A1.72150.24230.43530.103*
H7B1.83390.30220.38350.103*
H7C1.77880.17160.37660.103*
C180.3117 (3)−0.04441 (18)0.04568 (11)0.0714 (6)
H18A0.1910−0.04870.06450.107*
H18B0.3629−0.12050.04140.107*
H18C0.2875−0.00920.00410.107*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0484 (7)0.0417 (7)0.0717 (9)0.0082 (6)−0.0177 (6)−0.0105 (6)
C110.0403 (9)0.0413 (10)0.0459 (10)0.0016 (7)−0.0016 (8)0.0025 (7)
O30.0573 (8)0.0466 (8)0.0776 (10)−0.0033 (6)−0.0127 (7)−0.0133 (7)
O20.0621 (8)0.0375 (7)0.0800 (10)0.0054 (6)−0.0125 (7)−0.0039 (6)
C170.0456 (10)0.0472 (10)0.0509 (11)0.0076 (8)−0.0001 (9)−0.0037 (8)
C120.0412 (9)0.0423 (10)0.0445 (10)0.0036 (7)−0.0003 (8)0.0010 (7)
C140.0478 (10)0.0407 (10)0.0503 (10)−0.0017 (8)0.0006 (8)−0.0019 (8)
C130.0445 (10)0.0387 (10)0.0474 (10)0.0027 (7)0.0010 (8)−0.0017 (8)
C90.0424 (10)0.0386 (9)0.0462 (10)0.0010 (7)−0.0005 (8)0.0009 (7)
C150.0420 (10)0.0592 (12)0.0517 (11)−0.0058 (9)−0.0056 (8)−0.0034 (9)
C160.0427 (10)0.0560 (11)0.0494 (10)0.0043 (8)0.0005 (8)−0.0014 (8)
C80.0466 (11)0.0395 (9)0.0512 (10)−0.0006 (8)0.0015 (8)0.0011 (8)
C190.0462 (11)0.0651 (13)0.0639 (13)0.0047 (9)−0.0046 (10)−0.0083 (10)
C10.0400 (9)0.0448 (10)0.0447 (10)−0.0033 (8)−0.0004 (8)−0.0017 (8)
C200.0523 (12)0.0696 (13)0.0702 (14)0.0056 (10)−0.0074 (10)−0.0053 (11)
C100.0514 (11)0.0419 (10)0.0685 (13)0.0005 (8)−0.0197 (10)−0.0022 (9)
C20.0533 (11)0.0458 (10)0.0620 (12)−0.0098 (9)−0.0036 (9)0.0048 (9)
C40.0388 (10)0.0624 (12)0.0496 (11)−0.0015 (9)0.0014 (8)−0.0043 (9)
C30.0450 (11)0.0589 (12)0.0643 (12)−0.0164 (9)−0.0016 (9)0.0006 (10)
C60.0446 (10)0.0469 (10)0.0643 (12)−0.0085 (8)−0.0086 (9)0.0046 (9)
C50.0515 (11)0.0480 (11)0.0688 (13)−0.0012 (9)−0.0091 (10)0.0063 (9)
C210.0482 (12)0.0975 (17)0.0734 (15)0.0099 (11)−0.0044 (11)0.0110 (13)
C70.0460 (11)0.0862 (16)0.0692 (14)0.0021 (10)−0.0093 (10)−0.0048 (12)
C180.0684 (14)0.0598 (13)0.0821 (16)−0.0118 (11)−0.0073 (12)−0.0215 (11)

Geometric parameters (Å, °)

O1—C111.3567 (19)C1—C61.394 (2)
O1—C101.432 (2)C20—C211.484 (3)
C11—C121.383 (2)C20—H200.9300
C11—C141.408 (2)C10—H10A0.9700
O3—C141.364 (2)C10—H10B0.9700
O3—C181.422 (2)C2—C31.383 (3)
O2—C131.2232 (19)C2—H20.9300
C17—C161.370 (2)C4—C31.376 (3)
C17—C121.400 (2)C4—C51.384 (3)
C17—H170.9300C4—C71.505 (2)
C12—C131.470 (2)C3—H30.9300
C14—C151.378 (2)C6—C51.377 (2)
C13—C91.484 (2)C6—H60.9300
C9—C81.339 (2)C5—H50.9300
C9—C101.493 (2)C21—H21A0.9600
C15—C161.404 (3)C21—H21B0.9600
C15—H150.9300C21—H21C0.9600
C16—C191.476 (2)C7—H7A0.9600
C8—C11.464 (2)C7—H7B0.9600
C8—H80.9300C7—H7C0.9600
C19—C201.284 (3)C18—H18A0.9600
C19—H190.9300C18—H18B0.9600
C1—C21.389 (2)C18—H18C0.9600
C11—O1—C10116.25 (14)O1—C10—H10A108.4
O1—C11—C12123.15 (15)C9—C10—H10A108.4
O1—C11—C14116.80 (15)O1—C10—H10B108.4
C12—C11—C14119.95 (15)C9—C10—H10B108.4
C14—O3—C18117.44 (14)H10A—C10—H10B107.5
C16—C17—C12121.75 (17)C3—C2—C1121.84 (17)
C16—C17—H17119.1C3—C2—H2119.1
C12—C17—H17119.1C1—C2—H2119.1
C11—C12—C17119.46 (15)C3—C4—C5117.07 (17)
C11—C12—C13119.72 (15)C3—C4—C7121.62 (17)
C17—C12—C13120.65 (15)C5—C4—C7121.27 (18)
O3—C14—C15125.96 (16)C4—C3—C2121.27 (17)
O3—C14—C11115.04 (15)C4—C3—H3119.4
C15—C14—C11119.00 (16)C2—C3—H3119.4
O2—C13—C12121.22 (15)C5—C6—C1120.76 (17)
O2—C13—C9122.71 (15)C5—C6—H6119.6
C12—C13—C9116.06 (14)C1—C6—H6119.6
C8—C9—C13118.29 (15)C6—C5—C4122.31 (18)
C8—C9—C10124.61 (15)C6—C5—H5118.8
C13—C9—C10117.05 (14)C4—C5—H5118.8
C14—C15—C16121.81 (16)C20—C21—H21A109.5
C14—C15—H15119.1C20—C21—H21B109.5
C16—C15—H15119.1H21A—C21—H21B109.5
C17—C16—C15118.03 (16)C20—C21—H21C109.5
C17—C16—C19120.01 (17)H21A—C21—H21C109.5
C15—C16—C19121.95 (16)H21B—C21—H21C109.5
C9—C8—C1131.33 (16)C4—C7—H7A109.5
C9—C8—H8114.3C4—C7—H7B109.5
C1—C8—H8114.3H7A—C7—H7B109.5
C20—C19—C16129.0 (2)C4—C7—H7C109.5
C20—C19—H19115.5H7A—C7—H7C109.5
C16—C19—H19115.5H7B—C7—H7C109.5
C2—C1—C6116.74 (16)O3—C18—H18A109.5
C2—C1—C8117.80 (16)O3—C18—H18B109.5
C6—C1—C8125.46 (15)H18A—C18—H18B109.5
C19—C20—C21126.7 (2)O3—C18—H18C109.5
C19—C20—H20116.7H18A—C18—H18C109.5
C21—C20—H20116.7H18B—C18—H18C109.5
O1—C10—C9115.55 (14)
C10—O1—C11—C1227.3 (2)C12—C17—C16—C151.0 (3)
C10—O1—C11—C14−156.35 (16)C12—C17—C16—C19−177.52 (17)
O1—C11—C12—C17176.39 (16)C14—C15—C16—C17−1.2 (3)
C14—C11—C12—C170.2 (3)C14—C15—C16—C19177.31 (18)
O1—C11—C12—C131.2 (3)C13—C9—C8—C1178.65 (17)
C14—C11—C12—C13−174.98 (16)C10—C9—C8—C11.2 (3)
C16—C17—C12—C11−0.6 (3)C17—C16—C19—C20173.4 (2)
C16—C17—C12—C13174.58 (17)C15—C16—C19—C20−5.1 (3)
C18—O3—C14—C152.8 (3)C9—C8—C1—C2160.54 (19)
C18—O3—C14—C11−177.03 (17)C9—C8—C1—C6−20.4 (3)
O1—C11—C14—O33.0 (2)C16—C19—C20—C21−179.4 (2)
C12—C11—C14—O3179.47 (16)C11—O1—C10—C9−41.3 (2)
O1—C11—C14—C15−176.79 (16)C8—C9—C10—O1−154.41 (17)
C12—C11—C14—C15−0.4 (3)C13—C9—C10—O128.1 (2)
C11—C12—C13—O2165.08 (18)C6—C1—C2—C31.5 (3)
C17—C12—C13—O2−10.0 (3)C8—C1—C2—C3−179.40 (17)
C11—C12—C13—C9−14.0 (2)C5—C4—C3—C2−0.5 (3)
C17—C12—C13—C9170.86 (16)C7—C4—C3—C2−178.38 (18)
O2—C13—C9—C82.1 (3)C1—C2—C3—C4−0.5 (3)
C12—C13—C9—C8−178.81 (16)C2—C1—C6—C5−1.5 (3)
O2—C13—C9—C10179.76 (18)C8—C1—C6—C5179.48 (18)
C12—C13—C9—C10−1.2 (2)C1—C6—C5—C40.5 (3)
O3—C14—C15—C16−178.93 (18)C3—C4—C5—C60.5 (3)
C11—C14—C15—C160.9 (3)C7—C4—C5—C6178.39 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C8—H8···O20.932.392.784 (2)106
C7—H7C···O2i0.962.573.512 (4)166
C10—H10B···O2ii0.972.463.246 (4)138
C21—H21B···Cgiii0.962.863.722 (2)150

Symmetry codes: (i) −x+5/2, y−1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2242).

References

  • Bruker (2004). APEX2 Version 1.0-27. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kang, J.-G., Shin, S.-Y., Kim, M.-J., Bajpai, V., Maheshwari, D. K. & Kang, S.-C. (2004). J. Antibiot.57, 11, 726–731. [PubMed]
  • Nissa, M. N., Rajakannan, V., Kim, M.-J. & Velmurugan, D. (2001). Acta Cryst. E57, o1230–o1232.
  • Puviarasan, K., Govindasamy, L., Velmurugan, D., Shanmuga Sundara Raj, S., Shanmuga Sundaram, M., Raghunathan, R. & Fun, H.-K. (1998). Acta Cryst. C54, 961–963.
  • Schollmeyer, D., Kammerer, B., Peifer, C. & Laufer, S. (2005). Acta Cryst. E61, o868–0869.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Suresh, R., Kanagam, C. C., Umarani, P. R., Manivannan, V. & Büyükgüngör, O. (2007). Acta Cryst. E63, o4387.
  • Tillekeratne, L. M., Sherette, A., Grossman, P., Hupe, L., Hupe, D. & Hudson, R. A. (2001). Bioorg. Med. Chem. Lett.11, 2763–2764. [PubMed]
  • Wu, H., Xu, Z., Wan, Y., Liang, Y.-M. & Yu, K.-B. (2005). Acta Cryst. E61, o1692–o1693.
  • Wu, H., Xu, Z., Zhou, J. & Liang, Y.-M. (2005). Acta Cryst. E61, o1095–o1096.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography