PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o26.
Published online 2008 December 6. doi:  10.1107/S1600536807059739
PMCID: PMC2914987

2-O-Benzhydryl-3,4-(S)-O-benzyl­idene-d-lyxono-1,4-lactone

Abstract

X-ray crystallography unequivocally showed that protection of the free hydroxyl group of 3,5-O-benzyl­idene-d-lyxono-1,4-lactone with diphenyl­diazo­methane proceeded with retention of configuration to give the title compound, C25H22O5. The crystal structure consists of layers of inter­locked mol­ecules lying parallel to the a axis.

Related literature

For related literature see: Jackson et al. (1982 [triangle]); Petursson & Webber (1982 [triangle]); Petursson et al. (2007 [triangle]); Petursson (2001 [triangle], 2003 [triangle]); Draths et al. (1992 [triangle]); Collins & Ferrier (1995 [triangle]); Görbitz (1999 [triangle]); Larson (1970 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o26-scheme1.jpg

Experimental

Crystal data

  • C25H22O5
  • M r = 402.45
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o26-efi1.jpg
  • a = 9.2805 (2) Å
  • b = 11.3538 (2) Å
  • c = 19.2493 (4) Å
  • V = 2028.28 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 150 K
  • 0.50 × 0.25 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 [triangle]) T min = 0.66, T max = 0.99
  • 17577 measured reflections
  • 2610 independent reflections
  • 2218 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.077
  • S = 0.97
  • 2610 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: COLLECT (Nonius, 1997 [triangle]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 [triangle]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 [triangle]); molecular graphics: CAMERON (Watkin et al., 1996 [triangle]); software used to prepare material for publication: CRYSTALS.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807059739/lh2567sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807059739/lh2567Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Carbohydrates are relatively inexpensive and are useful starting materials for the synthesis of small chiral molecules (Collins & Ferrier, 1995) and chiral building blocks (Draths et al., 1992). Much of their synthetic utility is however dependent on developing successful protecting group strategies. Diazodiphenylmethane has been found to be a useful protecting group in the synthesis of methyl 2,3,6-tri-O-methyl-[α]-D-glucopyranoside and kojibiose octa-acetate (Jackson et al., 1982), and monoalkylations of vicinal diols have been achieved with this reagent and other diaryldiazoalkanes with high regioselectivities (Petursson & Webber, 1982; Petursson et al., 2007; Petursson, 2003; Petursson, 2001). This is of particular interest as the reaction is carried out under neutral conditions.

The utility of the benzhydryl group as a protecting group in carbohydrate chemistry has here been demonstrated with the reaction of 3,5-O-benzylidene-D-lyxono-1,4-lactone 1 with diphenyldiazomethane (Fig. 1). Such lactones are susceptible to epimerization at C-2; however x-ray crystallography unequivocally showed that this had not occurred and the protection had proceeded with retention of stereochemistry (Fig. 2). The crystal structure consists of layers of interlocked molecules (Fig. 3 and Fig. 4), lying parallel to the a-axis. There are no short range intermolecular interactions and no unusual bond lengths or angles. The absolute configuration was determined by the use of D-lyxonolactone as the starting material.

Experimental

The title compound was recrystallized from a 1:1 mixture of ethyl acetate and cyclohexane: m.p.: 461–463 K; [α]D19 +75.6 (c, 0.87 in chloroform).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.5) reflect changes in the illuminated volume of the crystal. Changes in illuminated volume were kept to a minimum, and were taken into account (Görbitz, 1999) by the multi-scan inter-frame scaling (DENZO/SCALEPACK, Otwinowski & Minor, 1997).

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.
Synthesis of the title compound.
Fig. 2.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 3.
The packing of the title compound projected along the b-axis.
Fig. 4.
The crystal structure is comprised of layers of interlocked molecules lying parrallel to the a-axis.

Crystal data

C25H22O5Dx = 1.318 Mg m3
Mr = 402.45Mo Kα radiation λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2585 reflections
a = 9.2805 (2) Åθ = 5–27º
b = 11.3538 (2) ŵ = 0.09 mm1
c = 19.2493 (4) ÅT = 150 K
V = 2028.28 (7) Å3Plate, colourless
Z = 40.50 × 0.25 × 0.10 mm
F000 = 848

Data collection

Area diffractometer2218 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.036
T = 150 Kθmax = 27.5º
ω scansθmin = 5.1º
Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997)h = −12→12
Tmin = 0.66, Tmax = 0.99k = −14→14
17577 measured reflectionsl = −24→24
2610 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031  Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.05P)2 + 0.05P] ,where P = (max(Fo2,0) + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.001
S = 0.97Δρmax = 0.29 e Å3
2610 reflectionsΔρmin = −0.26 e Å3
272 parametersExtinction correction: Larson (1970), Equation 22
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 450 (70)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.56592 (13)0.07905 (11)0.41774 (6)0.0309
C20.47068 (18)0.13932 (14)0.44062 (8)0.0235
O30.42559 (13)0.23855 (10)0.40913 (5)0.0269
C40.31374 (18)0.29565 (15)0.45100 (8)0.0256
C50.33742 (17)0.24620 (13)0.52366 (8)0.0217
C60.38488 (17)0.12108 (13)0.50693 (8)0.0217
O70.47250 (12)0.06450 (9)0.55632 (6)0.0225
C80.39489 (18)0.02870 (14)0.61807 (8)0.0231
C90.30274 (18)−0.07850 (14)0.60446 (7)0.0226
C100.16512 (18)−0.08515 (15)0.63305 (8)0.0268
C110.08162 (19)−0.18516 (17)0.62452 (9)0.0330
C120.1333 (2)−0.27901 (16)0.58623 (9)0.0343
C130.2677 (2)−0.27227 (15)0.55607 (9)0.0317
C140.35179 (19)−0.17234 (14)0.56436 (8)0.0256
C150.50938 (17)0.01400 (14)0.67385 (8)0.0244
C160.5410 (2)0.11037 (15)0.71553 (8)0.0322
C170.6506 (2)0.10513 (18)0.76443 (9)0.0411
C180.7288 (2)0.00261 (19)0.77220 (9)0.0398
C190.6970 (2)−0.09474 (18)0.73217 (9)0.0374
C200.58660 (19)−0.08899 (16)0.68292 (8)0.0307
O210.45628 (12)0.30226 (9)0.55734 (5)0.0220
C220.44412 (18)0.42778 (13)0.55495 (8)0.0222
O230.45259 (12)0.46674 (9)0.48571 (5)0.0252
C240.33004 (18)0.42708 (14)0.44694 (9)0.0266
C250.56836 (17)0.47882 (14)0.59490 (7)0.0215
C260.62747 (18)0.41894 (15)0.65075 (8)0.0271
C270.7432 (2)0.46592 (16)0.68709 (9)0.0325
C280.7986 (2)0.57411 (16)0.66872 (8)0.0324
C290.73958 (18)0.63525 (15)0.61357 (9)0.0312
C300.62512 (17)0.58803 (14)0.57660 (9)0.0259
H410.22010.26950.43290.0329*
H510.24820.24460.55180.0264*
H610.29890.07240.49830.0229*
H810.32720.09310.63470.0229*
H1010.1291−0.01820.65910.0311*
H111−0.0116−0.19210.64440.0416*
H1210.0759−0.34580.58220.0375*
H1310.3037−0.33450.53040.0389*
H1410.4444−0.16930.54360.0295*
H1610.48950.18150.71100.0385*
H1710.67010.17220.79280.0503*
H1810.8027−0.00070.80510.0490*
H1910.7479−0.16680.73680.0442*
H2010.5650−0.15760.65650.0324*
H2210.34860.44850.57660.0278*
H2410.34310.45110.39950.0304*
H2420.24540.46440.46570.0301*
H2610.59000.34340.66510.0326*
H2710.78100.41880.72460.0403*
H2810.87570.60490.69150.0371*
H2910.78030.70780.60240.0400*
H3010.58850.63170.53790.0304*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0281 (6)0.0319 (6)0.0328 (6)0.0032 (6)−0.0004 (6)−0.0061 (6)
C20.0221 (8)0.0219 (8)0.0267 (8)−0.0032 (8)−0.0045 (7)−0.0031 (7)
O30.0295 (6)0.0255 (6)0.0259 (5)−0.0002 (5)−0.0004 (5)0.0013 (5)
C40.0196 (8)0.0247 (8)0.0324 (8)−0.0007 (7)−0.0037 (7)−0.0007 (7)
C50.0149 (7)0.0200 (8)0.0303 (8)−0.0027 (7)−0.0003 (7)0.0007 (7)
C60.0189 (8)0.0172 (7)0.0290 (8)−0.0031 (7)−0.0036 (7)0.0015 (7)
O70.0193 (6)0.0208 (5)0.0274 (5)−0.0006 (5)−0.0007 (5)0.0031 (5)
C80.0225 (8)0.0198 (7)0.0272 (7)−0.0021 (7)0.0016 (7)−0.0001 (7)
C90.0230 (8)0.0214 (8)0.0234 (7)−0.0016 (7)−0.0039 (7)0.0035 (7)
C100.0242 (9)0.0301 (9)0.0262 (8)−0.0011 (8)−0.0030 (7)0.0021 (7)
C110.0234 (9)0.0414 (11)0.0343 (8)−0.0109 (9)−0.0040 (8)0.0100 (8)
C120.0366 (11)0.0280 (9)0.0383 (9)−0.0130 (8)−0.0142 (9)0.0106 (8)
C130.0401 (10)0.0211 (8)0.0340 (8)0.0005 (8)−0.0103 (9)0.0004 (8)
C140.0247 (9)0.0234 (8)0.0287 (8)0.0005 (7)−0.0020 (7)0.0018 (7)
C150.0226 (8)0.0274 (8)0.0233 (7)−0.0059 (7)0.0007 (7)0.0016 (7)
C160.0424 (11)0.0264 (9)0.0280 (8)−0.0085 (9)−0.0015 (9)0.0021 (7)
C170.0514 (12)0.0423 (11)0.0297 (8)−0.0159 (11)−0.0102 (9)0.0005 (8)
C180.0333 (10)0.0584 (13)0.0278 (8)−0.0122 (10)−0.0072 (8)0.0076 (9)
C190.0290 (9)0.0475 (12)0.0358 (9)0.0027 (10)−0.0026 (8)0.0066 (9)
C200.0288 (9)0.0321 (9)0.0313 (8)0.0019 (8)−0.0037 (8)−0.0036 (8)
O210.0221 (6)0.0156 (5)0.0283 (5)−0.0016 (5)−0.0024 (5)−0.0003 (5)
C220.0226 (8)0.0158 (7)0.0283 (8)0.0007 (7)0.0033 (7)0.0007 (7)
O230.0260 (6)0.0223 (5)0.0272 (5)−0.0045 (5)−0.0028 (5)0.0044 (5)
C240.0230 (8)0.0244 (8)0.0325 (8)−0.0016 (8)−0.0054 (8)0.0038 (8)
C250.0188 (8)0.0198 (7)0.0261 (7)0.0004 (7)0.0056 (7)−0.0043 (7)
C260.0316 (9)0.0252 (8)0.0246 (7)−0.0035 (8)0.0042 (8)−0.0012 (7)
C270.0351 (10)0.0353 (10)0.0271 (8)0.0007 (9)−0.0012 (8)−0.0033 (8)
C280.0261 (9)0.0366 (10)0.0345 (9)−0.0067 (8)−0.0009 (8)−0.0098 (8)
C290.0266 (9)0.0240 (9)0.0428 (9)−0.0057 (8)0.0038 (9)−0.0029 (8)
C300.0219 (8)0.0214 (8)0.0344 (8)−0.0001 (7)0.0038 (7)−0.0007 (7)

Geometric parameters (Å, °)

O1—C21.2015 (19)C15—C201.382 (2)
C2—O31.3461 (19)C16—C171.387 (3)
C2—C61.519 (2)C16—H1610.942
O3—C41.465 (2)C17—C181.380 (3)
C4—C51.523 (2)C17—H1710.955
C4—C241.502 (2)C18—C191.379 (3)
C4—H410.982C18—H1810.934
C5—C61.522 (2)C19—C201.397 (2)
C5—O211.4291 (18)C19—H1910.948
C5—H510.990C20—H2010.952
C6—O71.4063 (18)O21—C221.4303 (18)
C6—H610.984C22—O231.4065 (18)
O7—C81.4482 (19)C22—C251.502 (2)
C8—C91.510 (2)C22—H2211.008
C8—C151.520 (2)O23—C241.4329 (19)
C8—H811.016C24—H2410.961
C9—C101.393 (2)C24—H2420.962
C9—C141.392 (2)C25—C261.385 (2)
C10—C111.385 (2)C25—C301.393 (2)
C10—H1010.970C26—C271.388 (2)
C11—C121.382 (3)C26—H2610.966
C11—H1110.949C27—C281.378 (2)
C12—C131.377 (3)C27—H2710.965
C12—H1210.930C28—C291.382 (2)
C13—C141.386 (2)C28—H2810.909
C13—H1310.925C29—C301.386 (2)
C14—H1410.949C29—H2910.931
C15—C161.388 (2)C30—H3010.958
O1—C2—O3122.70 (15)C16—C15—C20118.96 (15)
O1—C2—C6128.04 (15)C15—C16—C17120.88 (17)
O3—C2—C6109.25 (13)C15—C16—H161121.0
C2—O3—C4110.05 (12)C17—C16—H161118.1
O3—C4—C5103.88 (12)C16—C17—C18119.71 (17)
O3—C4—C24109.85 (14)C16—C17—H171119.6
C5—C4—C24113.54 (14)C18—C17—H171120.7
O3—C4—H41107.3C17—C18—C19120.16 (17)
C5—C4—H41110.0C17—C18—H181119.6
C24—C4—H41111.8C19—C18—H181120.3
C4—C5—C6101.04 (12)C18—C19—C20119.92 (18)
C4—C5—O21111.33 (13)C18—C19—H191122.1
C6—C5—O21106.76 (12)C20—C19—H191118.0
C4—C5—H51112.9C19—C20—C15120.35 (17)
C6—C5—H51109.9C19—C20—H201118.6
O21—C5—H51114.0C15—C20—H201121.1
C5—C6—C2101.68 (12)C5—O21—C22111.61 (12)
C5—C6—O7116.79 (13)O21—C22—O23109.84 (12)
C2—C6—O7109.11 (12)O21—C22—C25107.90 (13)
C5—C6—H61109.0O23—C22—C25108.72 (13)
C2—C6—H61111.1O21—C22—H221106.8
O7—C6—H61109.0O23—C22—H221111.6
C6—O7—C8113.30 (11)C25—C22—H221111.9
O7—C8—C9111.43 (12)C22—O23—C24110.51 (12)
O7—C8—C15105.25 (12)C4—C24—O23111.41 (13)
C9—C8—C15115.46 (13)C4—C24—H241110.2
O7—C8—H81111.4O23—C24—H241107.8
C9—C8—H81106.5C4—C24—H242109.6
C15—C8—H81106.8O23—C24—H242108.3
C8—C9—C10119.62 (14)H241—C24—H242109.5
C8—C9—C14121.86 (14)C22—C25—C26120.79 (14)
C10—C9—C14118.52 (15)C22—C25—C30120.28 (14)
C9—C10—C11120.72 (16)C26—C25—C30118.92 (15)
C9—C10—H101118.6C25—C26—C27120.58 (16)
C11—C10—H101120.7C25—C26—H261121.1
C10—C11—C12120.09 (17)C27—C26—H261118.4
C10—C11—H111122.1C26—C27—C28120.13 (17)
C12—C11—H111117.8C26—C27—H271116.4
C11—C12—C13119.76 (17)C28—C27—H271123.4
C11—C12—H121118.3C27—C28—C29119.82 (17)
C13—C12—H121121.9C27—C28—H281120.9
C12—C13—C14120.44 (16)C29—C28—H281119.3
C12—C13—H131120.7C28—C29—C30120.25 (16)
C14—C13—H131118.9C28—C29—H291117.4
C9—C14—C13120.39 (15)C30—C29—H291122.3
C9—C14—H141120.1C25—C30—C29120.29 (16)
C13—C14—H141119.5C25—C30—H301121.6
C8—C15—C16117.99 (15)C29—C30—H301118.1
C8—C15—C20123.00 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H41···O21i0.982.593.502 (2)155
C24—H242···O7i0.962.593.320 (2)133

Symmetry codes: (i) x−1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2567).

References

  • Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  • Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  • Collins, P. M. & Ferrier, R. J. (1995). Monosaccharides: their Chemistry and their Roles in Natural Products New York: John Wiley & Sons.
  • Draths, K. M., Pompliano, D. L., Conley, D. L., Frost, J. W., Berry, A., Disbrow, G. L., Staversky, R. J. & Lievenset, J. C. (1992). J. Am. Chem. Soc.114, 3956–3962.
  • Görbitz, C. H. (1999). Acta Cryst. B55, 1090–1098. [PubMed]
  • Jackson, G., Jones, H. F., Petursson, S. & Webber, J. M. (1982). Carbohydr. Res.102, 147–157.
  • Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, pp. 291–294. Copenhagen: Munksgaard.
  • Nonius (1997). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Petursson, S. (2001). Carbohydr. Res.331, 239–245. [PubMed]
  • Petursson, S. (2003). Carbohydr. Res.338, 963–968. [PubMed]
  • Petursson, S., Jenkinson, S. F., Booth, K. V., Weymouth-Wilson, A. C., Watkin, D. J., Fleet, G. W. J. & Best, D. (2007). Acta Cryst. E63, o4121.
  • Petursson, S. & Webber, J. M. (1982). Carbohydr. Res.103, 41–52.
  • Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography