PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o24–o25.
Published online 2007 December 6. doi:  10.1107/S1600536807061004
PMCID: PMC2914986

Phenyl 2,3-O-isopropyl­idene-1-thio-α-d-rhamnopyran­oside

Abstract

In the title compound, C15H20O4S, a dioxolane ring is fused to the pyran ring of the sugar which carries a thio­phenyl substituent on the anomeric C atom. The dioxolane ring adopts an envelope conformation and the pyran ring system a distorted 4 C 1 chair. The structure is stabilized by O—H(...)O hydrogen bonds, forming centrosymmetric dimers that generate an R 2 2(10) ring motif. Additional C—H(...)O inter­actions form an extended network. Two C atoms of the phenyl ring are disordered over two positions; the site occupancy factors are ca. 0.7 and 0.3.

Related literature

For the background to angucyline anti­biotics, see: Carreno & Urbano (2005 [triangle]); Toshima (2003 [triangle]); Krohn & Rohr (1997 [triangle]); Rohr & Thiericke (1992 [triangle]). For previous reports of the title compound, see: Kerekgyarto et al., (1993 [triangle]); Yu & Wang, (2002 [triangle]). For related structures, see, for example: Yang et al. (2003 [triangle]); Wehlan et al. (2004 [triangle]). For ring puckering analysis, see: Cremer & Pople (1975 [triangle]). For graph-set analysis of hydrogen bonding, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o24-scheme1.jpg

Experimental

Crystal data

  • C15H20O4S
  • M r = 296.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o24-efi1.jpg
  • a = 24.3029 (12) Å
  • b = 5.3048 (3) Å
  • c = 12.0795 (7) Å
  • β = 97.014 (3)°
  • V = 1545.66 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 295 (2) K
  • 0.37 × 0.30 × 0.08 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2004 [triangle]) T min = 0.723, T max = 0.983
  • 17181 measured reflections
  • 3318 independent reflections
  • 2560 reflections with I > 2σ(I)
  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.144
  • S = 1.03
  • 3318 reflections
  • 204 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.37 e Å−3
  • Absolute structure: Flack (1983 [triangle]) 1392 Friedel pairs
  • Flack parameter: 0.03 (10)

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]) and TITAN2000 (Hunter & Simpson, 1999 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061004/ng2385sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061004/ng2385Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Otago for the purchase of the diffractometer and the Universiti Sains Malaysia for the award of a postgraduate scholarship to HO.

supplementary crystallographic information

Comment

In a sequence aimed at synthesizing 2,6-dideoxy-D-arabinopyranosides for use as glycosyl donors for the preparation of C-glycosides related to the angucycline antibiotics (Carreno & Urbano, 2005; Toshima, 2003; Krohn & Rohr, 1997; Rohr & Thiericke, 1992) we reduced tosylate (1) with lithium aluminium hydride to furnish the title compound (2), a known D-rhamnoside, (Kerekgyarto et al., 1993; Yu & Wang, 2002) in 63% yield (Scheme 1). An unexpected by-product (3), where reduction of the isopropylidene group had occurred, was also isolated in 14% yield.

In (2), Fig. 1, the C2, C3, O2, C7, O3 dioxolane ring is fused to the pyran C1···C5, O1 ring of the sugar which carries a thiophenyl substituent on the anomeric C1 atom. The dioxolane ring adopts an envelope conformation with C2 0.600 (3)Å from the meanplane through C3, O2, C7, O3. The pyran ring system is in a distorted 4C1 chair conformation with O1 and C3 0.609 (4) and -0.514 (4)Å from the meanplane through C1, C2, C4, C5 and θ = 17.9 (3)(Cremer & Pople, 1975).

In the crystal, adjacent molecules form inversion related dimers through O4—H4A···O3i hydrogen -bonds (i = -x, y, -z + 1, Table 1, Fig. 2) in an R22(10) ring motif (Bernstein et al., 1995). C—H···O hydrogen bonds stabilize the structure further, forming an extended network (Fig. 3).

Experimental

LiAlH4 (0.590 g, 15.6 mmol) was carefully added to a solution of tosylate (1) (2.00 g, 4.30 mmol) in diethyl ether (100 ml) cooled in an ice-salt bath. The ice bath was removed and the mixture was stirred under nitrogen for 12 h. The reaction was cooled in ice and quenched by the addition of 1M sodium hydroxide (5 ml). The mixture was extracted with diethyl ether, the organic layer washed with brine (50 ml) and water (2 x 100 mL). After drying over anhydrous magnesium sulfate the solvent was removed in vacuo. Purification of the residue by silica gel column chromatography [hexane/diethyl ether 1:1 to 2:1 as eluant] afforded two fractions. The higher RF fraction gave the title compound (2) (0.800 g, 63%) as a white crystalline solid. m.p. 76° C; [α]D = +199.3 (c 0.6, CH2Cl2); νmax (KBr): 3597, 2938, 2923, 1603, 1382, 1214, 1062 cm-1; δH(300 MHz, CDCl3): 1.26 (3H, d, J = 6.0 Hz, H-6), 1.39 (3H, s, CH3), 1.56 (3H, s, CH3), 2.2 (1H, OH), 3.50 (1H, m, H-5), 4.10 (1H, d, J = 6.4 Hz, H-2), 4.17 (1H, t, J = 7.1 Hz, H-4), 4.37 (2H, d, J = 0.9 Hz, H-3), 5.76 (1H, s, H-1), 7.32–7.50 (5H, m, PhH); δC(125 MHz, CDCl3): 17.13, 26.47, 28.22, 67.02, 75.32, 76.66, 77.50, 78.41, 88.31, 109.84, 127.67, 129.11, 131.93, 133.47; Found: C, 60.57; H, 6.80, S, 10.65%. C15H20O4S requires C, 60.79; H, 6.80; S, 10.82%.

Refinement

The C11 and C12 atoms of the thiophenyl ring were disordered over two conformations. The occupancy factor for the major component refined to 0.66 (3). H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.98 Å, Uiso = 1.2Ueq (C) for CH, 0.96 Å, Uiso = 1.5Ueq (C) for CH3 and 0.82 Å, Uiso = 1.5Ueq (O) for the OH group.

Figures

Fig. 1.
The structure of (2) showing the atom numbering with thermal ellipsoids drawn at the 30% probability level. H atoms are drawn as circles with arbitrary radii. For clarity, only the major disorder component of the disordered benzene ring is shown.
Fig. 2.
Dimers of (2) formed by O4—H4A···O3 hydrogen-bonds, drawn as dashed lines showing only the major disorder component.
Fig. 3.
Part of the crystal structure of (2) with hydrogen-bonds drawn as dashed lines and showing only the major disorder component.
Fig. 4.
The formation of the title compound.

Crystal data

C15H20O4SF000 = 632
Mr = 296.37Dx = 1.274 Mg m3
Monoclinic, C2Mo Kα radiation λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4464 reflections
a = 24.3029 (12) Åθ = 5.1–53.9º
b = 5.3048 (3) ŵ = 0.22 mm1
c = 12.0795 (7) ÅT = 295 (2) K
β = 97.014 (3)ºIrregular fragment, colourless
V = 1545.66 (15) Å30.37 × 0.30 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3318 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.060
T = 295(2) Kθmax = 27.1º
[var phi] & ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Bruker, 2004)h = −30→30
Tmin = 0.723, Tmax = 0.983k = −6→6
17181 measured reflectionsl = −15→15

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039  w = 1/[σ2(Fo2) + (0.1017P)2 + ] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144(Δ/σ)max = 0.002
S = 1.04Δρmax = 0.33 e Å3
3318 reflectionsΔρmin = −0.37 e Å3
204 parametersExtinction correction: none
1 restraintAbsolute structure: Flack (1983) 1392 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (10)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.18083 (7)0.4599 (4)0.64558 (13)0.0532 (4)
C10.17180 (10)0.3676 (5)0.75001 (19)0.0463 (6)
H10.18180.50160.80460.056*
C20.11178 (10)0.2973 (5)0.7572 (2)0.0463 (6)
H20.10930.19020.82250.056*
C30.08248 (9)0.1708 (5)0.6530 (2)0.0496 (6)
H30.0887−0.01160.65650.060*
C40.09941 (10)0.2762 (5)0.5457 (2)0.0533 (6)
H40.08270.44330.53210.064*
O40.08181 (8)0.1174 (5)0.45401 (18)0.0823 (8)
H4A0.04970.15120.42980.123*
C50.16240 (11)0.2999 (7)0.5535 (2)0.0642 (8)
H50.17960.13330.56440.077*
C60.18068 (16)0.4260 (13)0.4507 (3)0.1080 (17)
H6A0.16570.59350.44370.162*
H6B0.16740.33000.38550.162*
H6C0.22040.43380.45810.162*
O20.07846 (7)0.5178 (3)0.76344 (14)0.0476 (4)
O30.02550 (7)0.2257 (3)0.66139 (16)0.0527 (4)
C70.02277 (10)0.4350 (5)0.7378 (2)0.0474 (5)
C8−0.01126 (11)0.6449 (5)0.6803 (2)0.0570 (7)
H8A−0.00870.79140.72730.085*
H8B−0.04930.59270.66570.085*
H8C0.00250.68460.61110.085*
C9−0.00051 (14)0.3396 (9)0.8398 (3)0.0822 (10)
H9A0.02350.21160.87510.123*
H9B−0.03670.26980.81850.123*
H9C−0.00310.47640.89090.123*
S10.21316 (3)0.08767 (14)0.79616 (7)0.0730 (3)
C100.27881 (10)0.2165 (5)0.8419 (2)0.0494 (6)
C110.3053 (4)0.385 (3)0.7765 (10)0.077 (3)0.66 (3)
H110.28690.44290.70940.092*0.66 (3)
C120.3583 (4)0.464 (3)0.8110 (13)0.100 (5)0.66 (3)
H120.37650.56920.76590.120*0.66 (3)
C11A0.2958 (5)0.456 (3)0.8190 (18)0.058 (4)0.34 (3)
H11A0.27210.56440.77520.070*0.34 (3)
C12A0.3488 (6)0.534 (3)0.8621 (19)0.073 (4)0.34 (3)
H12A0.35870.70160.85230.088*0.34 (3)
C130.38489 (15)0.3843 (9)0.9152 (3)0.0866 (11)
H130.41780.45910.94600.104*
C140.36232 (13)0.2024 (11)0.9680 (3)0.1015 (17)
H140.38210.13111.03100.122*
C150.30916 (13)0.1145 (11)0.9312 (3)0.0966 (15)
H150.2944−0.01700.96910.116*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0429 (9)0.0662 (11)0.0483 (10)−0.0123 (8)−0.0041 (7)0.0024 (8)
C10.0379 (13)0.0511 (13)0.0457 (13)−0.0075 (10)−0.0115 (10)0.0022 (10)
C20.0382 (12)0.0517 (13)0.0467 (13)−0.0039 (10)−0.0041 (10)0.0062 (10)
C30.0297 (10)0.0385 (11)0.0767 (18)−0.0033 (8)−0.0093 (10)−0.0065 (10)
C40.0415 (13)0.0636 (15)0.0507 (15)0.0054 (12)−0.0106 (10)−0.0165 (12)
O40.0537 (11)0.1026 (19)0.0830 (14)0.0181 (12)−0.0224 (10)−0.0498 (14)
C50.0432 (14)0.091 (2)0.0564 (16)0.0000 (14)−0.0021 (12)−0.0170 (15)
C60.077 (2)0.192 (5)0.0571 (19)−0.017 (3)0.0178 (17)−0.007 (3)
O20.0397 (9)0.0506 (10)0.0503 (9)−0.0060 (6)−0.0029 (7)−0.0082 (7)
O30.0337 (8)0.0411 (9)0.0796 (12)−0.0055 (6)−0.0078 (8)−0.0083 (8)
C70.0386 (12)0.0497 (12)0.0528 (14)−0.0065 (10)0.0007 (10)−0.0012 (10)
C80.0496 (15)0.0457 (14)0.0727 (18)0.0014 (10)−0.0040 (12)−0.0037 (11)
C90.0603 (19)0.111 (3)0.077 (2)−0.0063 (18)0.0179 (16)0.020 (2)
S10.0472 (4)0.0536 (4)0.1102 (6)−0.0067 (3)−0.0231 (4)0.0170 (4)
C100.0322 (11)0.0581 (15)0.0554 (15)0.0026 (10)−0.0045 (10)0.0056 (11)
C110.053 (4)0.113 (7)0.060 (5)−0.021 (4)−0.014 (3)0.036 (5)
C120.050 (4)0.151 (10)0.093 (7)−0.025 (5)−0.016 (4)0.063 (7)
C11A0.031 (4)0.072 (6)0.070 (9)0.014 (4)0.006 (5)−0.005 (6)
C12A0.044 (6)0.076 (7)0.102 (11)−0.020 (4)0.021 (7)−0.025 (7)
C130.0476 (17)0.116 (3)0.090 (2)−0.0140 (19)−0.0161 (16)0.012 (2)
C140.0487 (17)0.180 (5)0.070 (2)−0.007 (2)−0.0170 (15)0.045 (3)
C150.0522 (16)0.158 (4)0.075 (2)−0.017 (2)−0.0119 (14)0.057 (3)

Geometric parameters (Å, °)

O1—C11.395 (3)C8—H8A0.9600
O1—C51.427 (3)C8—H8B0.9600
C1—C21.518 (3)C8—H8C0.9600
C1—S11.841 (3)C9—H9A0.9600
C1—H10.9800C9—H9B0.9600
C2—O21.429 (3)C9—H9C0.9600
C2—C31.525 (3)S1—C101.762 (3)
C2—H20.9800C10—C151.344 (4)
C3—O31.431 (3)C10—C111.400 (8)
C3—C41.514 (4)C10—C11A1.374 (15)
C3—H30.9800C11—C121.369 (10)
C4—O41.415 (3)C11—H110.9300
C4—C51.527 (4)C12—C131.407 (9)
C4—H40.9800C12—H120.9300
O4—H4A0.8200C11A—C12A1.394 (19)
C5—C61.524 (5)C11A—H11A0.9300
C5—H50.9800C12A—C131.295 (18)
C6—H6A0.9600C12A—H12A0.9300
C6—H6B0.9600C13—C141.313 (6)
C6—H6C0.9600C13—H130.9300
O2—C71.421 (3)C14—C151.394 (5)
O3—C71.450 (3)C14—H140.9300
C7—C91.506 (4)C15—H150.9300
C7—C81.505 (3)
C1—O1—C5115.3 (2)O3—C7—C8109.76 (19)
O1—C1—C2113.34 (19)C9—C7—C8112.7 (3)
O1—C1—S1114.62 (18)C7—C8—H8A109.5
C2—C1—S1106.12 (17)C7—C8—H8B109.5
O1—C1—H1107.5H8A—C8—H8B109.5
C2—C1—H1107.5C7—C8—H8C109.5
S1—C1—H1107.5H8A—C8—H8C109.5
O2—C2—C1110.9 (2)H8B—C8—H8C109.5
O2—C2—C3101.14 (19)C7—C9—H9A109.5
C1—C2—C3114.6 (2)C7—C9—H9B109.5
O2—C2—H2110.0H9A—C9—H9B109.5
C1—C2—H2110.0C7—C9—H9C109.5
C3—C2—H2110.0H9A—C9—H9C109.5
O3—C3—C4110.6 (2)H9B—C9—H9C109.5
O3—C3—C2102.1 (2)C10—S1—C1102.83 (12)
C4—C3—C2113.3 (2)C15—C10—C11117.7 (4)
O3—C3—H3110.2C15—C10—C11A112.7 (8)
C4—C3—H3110.2C15—C10—S1118.9 (3)
C2—C3—H3110.2C11—C10—S1122.1 (3)
O4—C4—C3111.2 (2)C11A—C10—S1125.3 (6)
O4—C4—C5107.6 (2)C12—C11—C10120.2 (6)
C3—C4—C5110.6 (2)C12—C11—H11119.9
O4—C4—H4109.1C10—C11—H11119.9
C3—C4—H4109.1C11—C12—C13119.5 (6)
C5—C4—H4109.1C11—C12—H12120.2
C4—O4—H4A109.5C13—C12—H12120.2
O1—C5—C4108.3 (2)C10—C11A—C12A119.1 (11)
O1—C5—C6106.2 (3)C10—C11A—H11A120.4
C4—C5—C6112.0 (3)C12A—C11A—H11A120.4
O1—C5—H5110.1C13—C12A—C11A122.8 (12)
C4—C5—H5110.1C13—C12A—H12A118.6
C6—C5—H5110.1C11A—C12A—H12A118.6
C5—C6—H6A109.5C14—C13—C12A113.2 (8)
C5—C6—H6B109.5C14—C13—C12118.7 (5)
H6A—C6—H6B109.5C14—C13—H13120.6
C5—C6—H6C109.5C12A—C13—H13115.7
H6A—C6—H6C109.5C12—C13—H13120.6
H6B—C6—H6C109.5C13—C14—C15121.1 (3)
C7—O2—C2105.45 (18)C13—C14—H14119.4
C3—O3—C7108.72 (17)C15—C14—H14119.4
O2—C7—O3105.01 (18)C10—C15—C14121.2 (4)
O2—C7—C9111.6 (2)C10—C15—H15119.4
O3—C7—C9108.3 (3)C14—C15—H15119.4
O2—C7—C8109.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.822.052.861 (2)169
C8—H8A···O3ii0.962.613.224 (3)122
C14—H14···O2iii0.932.623.524 (4)164

Symmetry codes: (i) −x, y, −z+1; (ii) x, y+1, z; (iii) −x+1/2, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2385).

References

  • Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst.37, 335–338.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). APEX2 (Version 1.017), SAINT (Version 7.12A) and SADABS (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Carreno, M. C. & Urbano, A. (2005). Synlett, pp. 1–25.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hunter, K. A. & Simpson, J. (1999). TITAN2000 University of Otago, New Zealand.
  • Kerekgyarto, J., Szurmai, Z. & Liptak, A. (1993). Carbohydr. Res.245, 65–80. [PubMed]
  • Krohn, K. & Rohr, J. (1997). Top. Curr. Chem. Bioorg. Chem.188 127–195.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Rohr, J. & Thiericke, R. (1992). Nat. Prod. Rep.9, 103–37. [PubMed]
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
  • Toshima, K. (2003). Rec. Dev. Carbohydrate Res 1, 27–47.
  • Wehlan, H., Dauber, M., Feranud, M. T. M., Schuppan, J., Mahrwald, R., Ziemer, B., Garcia, M. E. J. & Koert, U. (2004). Angew. Chem. Int. Ed.43, 4597–4601. [PubMed]
  • Yang, Z., Cao, H., Hu, J., Shan, R. & Yu, B. (2003). Tetrahedron, 59, 249–254.
  • Yu, B. & Wang, P. (2002). Org. Lett.4, 1919–1922. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography