PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o19.
Published online 2007 December 6. doi:  10.1107/S1600536807061429
PMCID: PMC2914981

Zwitterionic (4-benzyl­piperidinium-1-yl­meth­yl)phospho­nate

Abstract

The title compound, C13H20NO3P, exists as a zwitterion: the phospho­nic acid group has transferred its H atom to the amino group. The piperidine ring adopts a chair conformation. Mol­ecules are linked via hydrogen bonding to form a linear chain.

Related literature

For similar structures, see: Kotek et al. (2000 [triangle]); Mao et al. (2002 [triangle]); Ying et al. (2007 [triangle]); Vivani et al. (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o19-scheme1.jpg

Experimental

Crystal data

  • C13H20NO3P
  • M r = 269.27
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o19-efi1.jpg
  • a = 9.2791 (6) Å
  • b = 11.4916 (9) Å
  • c = 24.915 (2) Å
  • V = 2656.7 (3) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.21 mm−1
  • T = 120 (2) K
  • 0.50 × 0.50 × 0.30 mm

Data collection

  • Stoe IPDS II diffractometer
  • Absorption correction: numerical [shape of crystal determined optically (X-RED; Stoe & Cie, 2005 [triangle])] T min = 0.900, T max = 0.938
  • 9369 measured reflections
  • 3536 independent reflections
  • 3336 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.087
  • S = 1.10
  • 3536 reflections
  • 179 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.41 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061429/ng2383sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061429/ng2383Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SD acknowledges the Alzahra University Research Council for partial support of this work.

supplementary crystallographic information

Comment

Recently, an increasing attention has been focused on the synthesis and designing of aminodiphosphonic acids and new metal phosphonate inorganic–organic hybrid materials with one-, two- or three-dimensional structures due to their potential applications in porous materials, ion exchange reagents, catalysis, sensors, nonlinear optics materials, anti-tumour drugs, photovoltaic devices and biotechnologies (Kotek et al., 2000; Ying et al., 2007; Mao et al., 2002; Vivani et al., 2004). The title compounds, (I), Fig. 1, was prepared by the reaction of benzylpiperidine and formaldehyde with posphorus acid (Scheme I).

The coordination environment around the phosphorus atoms of compound (I) are approximately tetrahedral, since average of six angles involving P are 109.35°. However the coordination is clearly distorted, arising from the presence of different substituents at phosphorus center. The angles O2—P1—O3 and C1—P1—O2 have values of 104.59 (5) and 118.29 (4)°, respectively. The piperidine ring in the titled compound adopt a chair conformation similar to that of cyclohexane. Bond lengths involving phosphorus atom are in good agreement with values found in other similar compounds (Ying et al., 2007; Vivani et al., 2004). The molecules are linked via intermolecular hydrogen bonding to form a one-dimensional chain of fused rings (Fig. 2).

Experimental

A quantity of 0.33 mole of benzylpiperidne was dissolved in 75 ml of concentrated HCl and a concentrated aqueous solution of 2 moles of phosphorous acid. The resulting solution was heated to reflux temperature and 160 ml of 37% aqueous formaldehyde solution (2 moles) was added dropwise in the course of 1 hr and the reaction mixture was kept at reflux temperature for 3 additional hr. Upon cooling to room temperature the acids crystallized. Calc for C13H20NO3P: C 57.99, H 7.49, N 5.20%; found C 57.96, H 7.50, N 5.21%.

Refinement

H1A, H1B (for CH2) and H1C, H1D (for NH and OH) were located in difference syntheses and refined isotropically [C—H = 0.955 (16) and 0.971 (15) Å, Uiso(H) = 0.024 (4) and 0.018 (4) Å2; N—H = 0.961 (16), Uiso(H) = 0.026 (4) Å2 and O—H = 0.87 (2), Uiso(H) = 0.025 (6) Å2]. The remaining H atoms were positioned geometrically, C—H = 0.93 and 0.97 Å, for aromatic and methylene H atoms and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
Molecular structure of (I) showing the atom-labelling scheme with thermal ellipsoids drawn at the 50% probability level.
Fig. 2.
Packing of molecules, I in the unit cell, showing the hydrogen bonding.

Crystal data

C13H20N1O3P1F000 = 1152
Mr = 269.27Dx = 1.345 Mg m3
Orthorhombic, PbcaMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2500 reflections
a = 9.2791 (6) Åθ = 2.7–29.2º
b = 11.4916 (9) ŵ = 0.21 mm1
c = 24.915 (2) ÅT = 120 (2) K
V = 2656.7 (3) Å3Block, colourless
Z = 80.50 × 0.50 × 0.30 mm

Data collection

Stoe IPDS II diffractometer3536 independent reflections
Radiation source: fine-focus sealed tube3336 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.029
Detector resolution: 0.15 pixels mm-1θmax = 29.2º
T = 120(2) Kθmin = 2.7º
rotation method scansh = −12→9
Absorption correction: numericalshape of crystal determined opticallyk = −15→15
Tmin = 0.900, Tmax = 0.938l = −34→22
9369 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.087  w = 1/[σ2(Fo2) + (0.0402P)2 + 1.177P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.013
3536 reflectionsΔρmax = 0.41 e Å3
179 parametersΔρmin = −0.37 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.13013 (11)0.26512 (9)0.27800 (4)0.01598 (19)
H1A0.0464 (18)0.3020 (14)0.2923 (6)0.024 (4)*
H1B0.1752 (16)0.3137 (13)0.2509 (6)0.018 (4)*
C20.17889 (11)0.19257 (9)0.37040 (4)0.01476 (19)
H2A0.15230.11450.35950.018*
H2B0.09290.23130.38340.018*
C30.28979 (12)0.18585 (9)0.41550 (4)0.0168 (2)
H3A0.37220.14110.40340.020*
H3B0.24780.14560.44600.020*
C40.34034 (11)0.30678 (9)0.43324 (4)0.0164 (2)
H40.25720.34920.44760.020*
C50.39579 (12)0.37187 (9)0.38385 (4)0.0187 (2)
H5A0.42300.45030.39410.022*
H5B0.48120.33300.37030.022*
C60.28336 (12)0.37782 (9)0.33957 (4)0.0186 (2)
H6A0.20030.42120.35220.022*
H6B0.32310.41840.30880.022*
C70.45790 (12)0.30258 (11)0.47679 (4)0.0205 (2)
H7A0.53860.25740.46340.025*
H7B0.49200.38110.48340.025*
C80.40779 (11)0.25042 (10)0.52920 (4)0.0171 (2)
C90.43625 (13)0.13470 (10)0.54190 (5)0.0232 (2)
H90.48780.08880.51790.028*
C100.38867 (15)0.08657 (11)0.59010 (6)0.0293 (3)
H100.40940.00930.59810.035*
C110.31058 (14)0.15354 (14)0.62611 (5)0.0308 (3)
H110.27750.12120.65800.037*
C120.28203 (13)0.26958 (13)0.61413 (5)0.0274 (3)
H120.23040.31520.63820.033*
C130.33060 (12)0.31742 (11)0.56609 (4)0.0206 (2)
H130.31140.39510.55850.025*
N10.23706 (9)0.25759 (7)0.32299 (3)0.01285 (16)
H1C0.3240 (17)0.2205 (14)0.3109 (7)0.026 (4)*
O1−0.02029 (8)0.06162 (7)0.28658 (3)0.01733 (16)
H1D−0.112 (2)0.0696 (19)0.2790 (9)0.025 (6)*
O2−0.00660 (8)0.16513 (8)0.19677 (3)0.01869 (17)
O30.21224 (8)0.05809 (7)0.23662 (3)0.01744 (16)
P10.07816 (3)0.12808 (2)0.245156 (10)0.01325 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0144 (4)0.0193 (5)0.0142 (4)0.0022 (4)−0.0014 (4)0.0033 (4)
C20.0152 (4)0.0181 (4)0.0110 (4)−0.0024 (4)0.0017 (3)0.0016 (3)
C30.0185 (5)0.0196 (5)0.0123 (4)−0.0013 (4)−0.0011 (3)0.0014 (4)
C40.0143 (4)0.0206 (5)0.0144 (4)0.0008 (4)0.0003 (3)−0.0030 (4)
C50.0190 (5)0.0178 (5)0.0194 (5)−0.0033 (4)−0.0016 (4)0.0003 (4)
C60.0208 (5)0.0148 (5)0.0202 (5)−0.0024 (4)−0.0025 (4)0.0020 (4)
C70.0150 (5)0.0308 (6)0.0158 (5)−0.0019 (4)−0.0005 (4)−0.0032 (4)
C80.0124 (4)0.0241 (5)0.0147 (4)−0.0007 (4)−0.0027 (3)−0.0044 (4)
C90.0218 (5)0.0224 (5)0.0252 (5)−0.0018 (4)−0.0047 (4)−0.0074 (4)
C100.0274 (6)0.0255 (6)0.0349 (6)−0.0099 (5)−0.0105 (5)0.0052 (5)
C110.0208 (6)0.0496 (8)0.0220 (5)−0.0131 (6)−0.0042 (4)0.0084 (5)
C120.0158 (5)0.0493 (8)0.0170 (5)0.0011 (5)0.0009 (4)−0.0057 (5)
C130.0158 (5)0.0286 (6)0.0175 (5)0.0049 (4)−0.0022 (4)−0.0054 (4)
N10.0119 (4)0.0149 (4)0.0117 (3)0.0007 (3)0.0013 (3)0.0012 (3)
O10.0094 (3)0.0269 (4)0.0157 (3)−0.0011 (3)−0.0008 (3)0.0056 (3)
O20.0117 (3)0.0317 (4)0.0127 (3)0.0020 (3)−0.0013 (3)0.0044 (3)
O30.0094 (3)0.0236 (4)0.0194 (4)0.0015 (3)0.0004 (3)−0.0001 (3)
P10.00793 (13)0.02066 (14)0.01116 (12)0.00100 (9)−0.00030 (8)0.00220 (9)

Geometric parameters (Å, °)

C1—N11.4993 (13)C7—C81.5101 (15)
C1—P11.8391 (11)C7—H7A0.9700
C1—H1A0.955 (16)C7—H7B0.9700
C1—H1B0.971 (15)C8—C91.3922 (16)
C2—N11.4984 (12)C8—C131.3966 (15)
C2—C31.5256 (14)C9—C101.3939 (18)
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—C111.386 (2)
C3—C41.5319 (15)C10—H100.9300
C3—H3A0.9700C11—C121.392 (2)
C3—H3B0.9700C11—H110.9300
C4—C51.5293 (15)C12—C131.3921 (17)
C4—C71.5394 (15)C12—H120.9300
C4—H40.9800C13—H130.9300
C5—C61.5199 (15)N1—H1C0.961 (16)
C5—H5A0.9700O1—P11.5758 (8)
C5—H5B0.9700O1—H1D0.87 (2)
C6—N11.5047 (13)O2—P11.5010 (8)
C6—H6A0.9700O3—P11.4967 (8)
C6—H6B0.9700
N1—C1—P1117.17 (7)C8—C7—H7A108.8
N1—C1—H1A106.5 (9)C4—C7—H7A108.8
P1—C1—H1A109.5 (10)C8—C7—H7B108.8
N1—C1—H1B105.6 (9)C4—C7—H7B108.8
P1—C1—H1B107.1 (9)H7A—C7—H7B107.7
H1A—C1—H1B110.8 (13)C9—C8—C13118.31 (11)
N1—C2—C3111.28 (8)C9—C8—C7121.14 (10)
N1—C2—H2A109.4C13—C8—C7120.54 (11)
C3—C2—H2A109.4C8—C9—C10120.98 (11)
N1—C2—H2B109.4C8—C9—H9119.5
C3—C2—H2B109.4C10—C9—H9119.5
H2A—C2—H2B108.0C11—C10—C9120.19 (12)
C2—C3—C4111.91 (8)C11—C10—H10119.9
C2—C3—H3A109.2C9—C10—H10119.9
C4—C3—H3A109.2C10—C11—C12119.50 (12)
C2—C3—H3B109.2C10—C11—H11120.2
C4—C3—H3B109.2C12—C11—H11120.2
H3A—C3—H3B107.9C11—C12—C13120.07 (12)
C5—C4—C3108.33 (8)C11—C12—H12120.0
C5—C4—C7110.13 (9)C13—C12—H12120.0
C3—C4—C7113.07 (9)C12—C13—C8120.94 (12)
C5—C4—H4108.4C12—C13—H13119.5
C3—C4—H4108.4C8—C13—H13119.5
C7—C4—H4108.4C2—N1—C1112.32 (8)
C6—C5—C4112.03 (9)C2—N1—C6110.13 (8)
C6—C5—H5A109.2C1—N1—C6109.95 (8)
C4—C5—H5A109.2C2—N1—H1C109.2 (10)
C6—C5—H5B109.2C1—N1—H1C110.3 (10)
C4—C5—H5B109.2C6—N1—H1C104.7 (9)
H5A—C5—H5B107.9P1—O1—H1D111.8 (14)
N1—C6—C5110.74 (8)O3—P1—O2118.29 (4)
N1—C6—H6A109.5O3—P1—O1108.33 (5)
C5—C6—H6A109.5O2—P1—O1111.09 (4)
N1—C6—H6B109.5O3—P1—C1107.78 (5)
C5—C6—H6B109.5O2—P1—C1104.59 (5)
H6A—C6—H6B108.1O1—P1—C1106.00 (5)
C8—C7—C4113.81 (9)
N1—C2—C3—C457.02 (11)C10—C11—C12—C130.56 (18)
C2—C3—C4—C5−54.79 (11)C11—C12—C13—C80.24 (17)
C2—C3—C4—C7−177.15 (9)C9—C8—C13—C12−0.62 (16)
C3—C4—C5—C655.62 (11)C7—C8—C13—C12178.99 (10)
C7—C4—C5—C6179.76 (9)C3—C2—N1—C1179.84 (8)
C4—C5—C6—N1−58.18 (12)C3—C2—N1—C6−57.25 (11)
C5—C4—C7—C8174.20 (9)P1—C1—N1—C2−65.29 (10)
C3—C4—C7—C8−64.45 (12)P1—C1—N1—C6171.70 (7)
C4—C7—C8—C998.50 (12)C5—C6—N1—C257.69 (11)
C4—C7—C8—C13−81.09 (13)C5—C6—N1—C1−178.02 (9)
C13—C8—C9—C100.20 (16)N1—C1—P1—O3−43.51 (9)
C7—C8—C9—C10−179.40 (10)N1—C1—P1—O2−170.22 (7)
C8—C9—C10—C110.60 (18)N1—C1—P1—O172.31 (8)
C9—C10—C11—C12−0.98 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.961 (16)1.707 (16)2.651 (1)166 (2)
O1—H1D···O3i0.877 (19)1.682 (19)2.549 (1)169 (2)

Symmetry codes: (i) , , .

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2383).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Kotek, J., Vojtisek, P., Cisarova, I., Hermann, P., Jurecka, P., Rohovec, J. & Lukes, I. (2000). Collect. Czech. Chem. Commun.65, 1289–1316.
  • Mao, J. G., Wang, Z. & Clearfield, A. (2002). J. Chem. Soc. Dalton Trans. pp. 4541–4546.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Stoe & Cie (2005). X-RED (Version 1.28b) and X-AREA (Version 1.31). Stoe & Cie GmbH, Darmstadt, Germany.
  • Vivani, R., Costantino, R., Nocchetti, M. & Gatta, G. D. (2004). J. Solid State Chem.177, 4013–4022.
  • Ying, S.-M., Lin, J.-Y., Zhou, G.-P., Luo, Q.-Y. & Wu, J.-H. (2007). Acta Cryst. E63, o1153–o1154.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography