PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o17.
Published online 2007 December 6. doi:  10.1107/S1600536807060758
PMCID: PMC2914979

1-(4-Nitro­phenoxy­meth­yl)-1H-1,2,4-triazole

Abstract

The asymmetric unit of the title compound, C9H8N4O3, contains two independent mol­ecules. The dihedral angles formed by the triazole and benzene rings in the two independent mol­ecules are 83.3 (3) and 86.9 (4)°. The mol­ecular packing involves weak C—H(...)N and C—H(...)O inter­actions, and π–π stacking inter­actions [centroid-to-centroid distance 3.745 (1) Å] between the aromatic rings of pairs of mol­ecules.

Related literature

For the synthesis of related energetic polynitro and heterocyclic compounds, see: Jin et al. (2005 [triangle], 2006 [triangle]); Wang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o17-scheme1.jpg

Experimental

Crystal data

  • C9H8N4O3
  • M r = 220.19
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o17-efi1.jpg
  • a = 11.2344 (4) Å
  • b = 7.7197 (3) Å
  • c = 22.789 (1) Å
  • β = 94.730 (1)°
  • V = 1969.65 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 296 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.977, T max = 0.989
  • 18061 measured reflections
  • 3863 independent reflections
  • 2540 reflections with I > 2σ(I)
  • R int = 0.056

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.134
  • S = 1.07
  • 3863 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL (Bruker, 2001 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060758/ln2005sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060758/ln2005Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author gratefully acknowledges the financial support of the National Science Funds for Distinguished Young Scholars Program and Hubei Provincial Department of Education, People’s Republic of China.

supplementary crystallographic information

Comment

The derivatives of 1,2,4-triazole are of great significance as pharmaceuticals, pesticides and high energetic materials. In recent years, the synthesis of energetic, polynitro and heterocyclic compounds have attracted considerable interest (Wang et al., 2007; Jin et al., 2005, 2006). This paper reports the crystal structure of the title 1,3,4-triazole derivative, (I).

The asymmetric unit of the title compound contains two independent molecules (Fig. 1). The dihedral angles formed by the triazole and benzene rings in the two independent molecules are 83.3 (3)° and 86.9 (4)°, respectively. The molecular packing involves weak C—H···N and C—H···O interactions (Table 1), and π···π stacking interactions of aromatic rings with the centroid to centroid distance being 3.745 (1) Å for adjacent benzene rings in pairs of molecules.

Experimental

Anhydrous K2CO3(420 mg, 3.0 mmol) was added to a solution of p-nitrophenol (139 mg, 1.0 mmol) in anhydrous acetonitrile (30 ml). After stirring for 30 min at 333 K, 1-chloromethyl-1H-1, 2, 4-triazole (117 mg, 1.0 mmol) was added. The mixture was refluxed for 12 h. After cooling, a small amount of precipitate was removed by filtration. The residue was purified by column chromatography to obtain a white solid (yield 86.2%, m.p. 465 K decomp.). Suitable crystals were obtained by evaporation of an ethyl acetate solution of the product.

Refinement

H atoms were positioned geometrically at distances of 0.93 Å (CH) and 0.97 Å (CH2) from the parent C atoms; a riding model was used during the refinement process. The Uiso values were constrained to be 1.2Ueq of the carrier atom.

Figures

Fig. 1.
A view of the asymmetric unit of title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.

Crystal data

C9H8N4O3F000 = 912
Mr = 220.19Dx = 1.485 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2528 reflections
a = 11.2344 (4) Åθ = 3.1–21.4º
b = 7.7197 (3) ŵ = 0.12 mm1
c = 22.789 (1) ÅT = 296 (2) K
β = 94.730 (1)ºBlock, colorless
V = 1969.65 (14) Å30.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Bruker SMART APEX CCD area-detector diffractometer3863 independent reflections
Radiation source: fine-focus sealed tube2540 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.056
T = 296(2) Kθmax = 26.0º
phi and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −13→13
Tmin = 0.977, Tmax = 0.989k = −9→9
18061 measured reflectionsl = −28→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.134  w = 1/[σ2(Fo2) + (0.063P)2 + 0.0478P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3863 reflectionsΔρmax = 0.19 e Å3
290 parametersΔρmin = −0.17 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.81377 (17)0.3196 (3)1.03182 (8)0.0408 (5)
C20.93247 (17)0.3426 (3)1.04813 (8)0.0458 (5)
H20.96700.45171.04610.055*
C31.00048 (18)0.2022 (3)1.06769 (9)0.0462 (5)
H31.08170.21551.07830.055*
C40.94708 (17)0.0410 (3)1.07144 (8)0.0413 (5)
C50.82669 (17)0.0197 (3)1.05410 (9)0.0465 (5)
H50.7916−0.08901.05590.056*
C60.75967 (18)0.1595 (3)1.03423 (9)0.0452 (5)
H60.67890.14661.02250.054*
C71.12463 (17)−0.0840 (3)1.11700 (10)0.0521 (6)
H7A1.13010.01341.14400.063*
H7B1.1768−0.06231.08600.063*
C81.15858 (19)−0.2774 (3)1.20432 (10)0.0543 (6)
H81.1336−0.20111.23240.065*
C91.22169 (18)−0.4899 (3)1.16231 (11)0.0572 (6)
H91.2515−0.60031.15630.069*
C100.1692 (2)0.7068 (3)0.80842 (8)0.0473 (5)
C110.2882 (2)0.7309 (3)0.82472 (9)0.0533 (6)
H110.32130.84130.82430.064*
C120.35811 (18)0.5906 (3)0.84169 (9)0.0494 (6)
H120.43900.60500.85290.059*
C130.30677 (17)0.4276 (3)0.84194 (9)0.0440 (5)
C140.18569 (18)0.4057 (3)0.82638 (10)0.0529 (6)
H140.15150.29620.82780.064*
C150.11677 (19)0.5457 (3)0.80901 (10)0.0536 (6)
H150.03580.53230.79780.064*
C160.49184 (17)0.2917 (3)0.87293 (10)0.0522 (6)
H16A0.50600.35870.90880.063*
H16B0.53220.34790.84210.063*
C170.58384 (17)0.0123 (3)0.84480 (10)0.0543 (6)
H170.59900.04080.80650.065*
C180.5699 (2)−0.1152 (3)0.92397 (12)0.0624 (6)
H180.5755−0.20180.95240.075*
N10.74171 (17)0.4702 (2)1.01202 (8)0.0516 (5)
N21.15923 (14)−0.2405 (2)1.14761 (7)0.0444 (4)
N31.20085 (17)−0.3790 (3)1.11895 (8)0.0605 (5)
N41.19720 (17)−0.4338 (3)1.21593 (9)0.0617 (5)
N50.0937 (2)0.8560 (3)0.79082 (8)0.0630 (6)
N60.53437 (14)0.1182 (2)0.88181 (7)0.0460 (4)
N70.52429 (16)0.0362 (3)0.93374 (8)0.0588 (5)
N80.60847 (16)−0.1386 (3)0.86990 (9)0.0631 (6)
O10.79196 (15)0.6084 (2)1.00659 (8)0.0747 (5)
O20.63420 (14)0.4506 (2)1.00168 (8)0.0744 (5)
O30.13855 (18)0.9998 (2)0.79477 (7)0.0843 (6)
O4−0.01089 (19)0.8306 (3)0.77307 (8)0.0874 (6)
O50.36738 (12)0.27844 (18)0.85648 (7)0.0563 (4)
O61.00523 (12)−0.10510 (18)1.09272 (6)0.0532 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0475 (11)0.0415 (12)0.0333 (11)0.0041 (10)0.0032 (9)−0.0001 (9)
C20.0503 (12)0.0425 (12)0.0443 (12)−0.0069 (10)0.0025 (10)0.0053 (10)
C30.0406 (11)0.0508 (14)0.0474 (13)−0.0034 (10)0.0042 (9)0.0055 (10)
C40.0445 (11)0.0418 (12)0.0377 (11)0.0039 (10)0.0043 (9)−0.0005 (10)
C50.0494 (12)0.0384 (12)0.0511 (13)−0.0060 (10)0.0008 (10)−0.0018 (10)
C60.0419 (11)0.0501 (14)0.0434 (12)−0.0017 (10)0.0018 (9)−0.0028 (10)
C70.0435 (12)0.0524 (14)0.0602 (14)0.0039 (10)0.0030 (10)0.0046 (11)
C80.0630 (14)0.0564 (16)0.0435 (14)−0.0004 (12)0.0039 (11)−0.0047 (11)
C90.0490 (13)0.0460 (14)0.0765 (17)0.0087 (11)0.0041 (12)0.0014 (14)
C100.0656 (14)0.0413 (13)0.0356 (12)0.0079 (11)0.0083 (10)−0.0034 (10)
C110.0730 (16)0.0407 (13)0.0469 (13)−0.0105 (11)0.0085 (11)−0.0050 (10)
C120.0474 (12)0.0472 (14)0.0532 (13)−0.0077 (10)0.0022 (10)−0.0052 (11)
C130.0452 (11)0.0410 (13)0.0462 (12)0.0001 (10)0.0065 (9)−0.0038 (10)
C140.0477 (12)0.0400 (13)0.0710 (16)−0.0056 (10)0.0047 (11)−0.0036 (11)
C150.0484 (12)0.0510 (14)0.0608 (15)0.0015 (11)0.0008 (11)−0.0052 (11)
C160.0452 (12)0.0528 (14)0.0575 (14)−0.0006 (10)−0.0027 (10)0.0005 (11)
C170.0420 (12)0.0655 (16)0.0559 (14)0.0025 (11)0.0069 (10)−0.0078 (13)
C180.0598 (14)0.0543 (16)0.0716 (18)0.0023 (12)−0.0028 (13)0.0067 (14)
N10.0583 (12)0.0486 (12)0.0478 (11)0.0069 (10)0.0038 (9)−0.0010 (9)
N20.0447 (9)0.0428 (11)0.0460 (11)0.0058 (8)0.0052 (8)0.0018 (9)
N30.0677 (12)0.0589 (13)0.0562 (12)0.0249 (10)0.0133 (10)−0.0016 (10)
N40.0680 (13)0.0552 (13)0.0609 (13)0.0003 (10)−0.0007 (10)0.0084 (11)
N50.0972 (17)0.0528 (14)0.0397 (11)0.0174 (13)0.0100 (11)0.0012 (10)
N60.0450 (10)0.0490 (11)0.0433 (10)0.0028 (8)0.0000 (8)0.0018 (9)
N70.0703 (12)0.0585 (13)0.0475 (12)0.0035 (10)0.0040 (9)0.0055 (10)
N80.0540 (12)0.0585 (14)0.0766 (15)0.0068 (10)0.0034 (10)−0.0082 (12)
O10.0813 (12)0.0423 (10)0.0994 (14)0.0034 (9)0.0008 (10)0.0088 (9)
O20.0509 (10)0.0748 (12)0.0957 (13)0.0124 (8)−0.0050 (9)0.0076 (10)
O30.1379 (17)0.0431 (11)0.0728 (13)0.0136 (11)0.0146 (11)0.0049 (9)
O40.0864 (13)0.0898 (15)0.0835 (13)0.0339 (11)−0.0075 (11)0.0022 (11)
O50.0418 (8)0.0452 (9)0.0807 (11)−0.0004 (7)−0.0024 (7)0.0013 (8)
O60.0479 (8)0.0434 (9)0.0667 (10)0.0016 (7)−0.0057 (7)0.0056 (8)

Geometric parameters (Å, °)

C1—C21.366 (3)C11—C121.375 (3)
C1—C61.381 (3)C11—H110.9300
C1—N11.466 (3)C12—C131.384 (3)
C2—C31.379 (3)C12—H120.9300
C2—H20.9300C13—O51.365 (2)
C3—C41.387 (3)C13—C141.387 (3)
C3—H30.9300C14—C151.369 (3)
C4—O61.372 (2)C14—H140.9300
C4—C51.387 (3)C15—H150.9300
C5—C61.371 (3)C16—O51.421 (2)
C5—H50.9300C16—N61.431 (3)
C6—H60.9300C16—H16A0.9700
C7—O61.418 (2)C16—H16B0.9700
C7—N21.433 (3)C17—N81.317 (3)
C7—H7A0.9700C17—N61.329 (3)
C7—H7B0.9700C17—H170.9300
C8—N41.303 (3)C18—N71.302 (3)
C8—N21.324 (2)C18—N81.352 (3)
C8—H80.9300C18—H180.9300
C9—N31.314 (3)N1—O11.218 (2)
C9—N41.346 (3)N1—O21.221 (2)
C9—H90.9300N2—N31.356 (2)
C10—C111.370 (3)N5—O31.219 (3)
C10—C151.376 (3)N5—O41.226 (3)
C10—N51.467 (3)N6—N71.355 (2)
C2—C1—C6121.91 (19)O5—C13—C14114.73 (18)
C2—C1—N1118.85 (19)C12—C13—C14120.7 (2)
C6—C1—N1119.23 (18)C15—C14—C13119.8 (2)
C1—C2—C3119.2 (2)C15—C14—H14120.1
C1—C2—H2120.4C13—C14—H14120.1
C3—C2—H2120.4C14—C15—C10118.9 (2)
C2—C3—C4119.62 (19)C14—C15—H15120.5
C2—C3—H3120.2C10—C15—H15120.5
C4—C3—H3120.2O5—C16—N6106.23 (16)
O6—C4—C3124.31 (17)O5—C16—H16A110.5
O6—C4—C5115.34 (18)N6—C16—H16A110.5
C3—C4—C5120.34 (19)O5—C16—H16B110.5
C6—C5—C4119.80 (19)N6—C16—H16B110.5
C6—C5—H5120.1H16A—C16—H16B108.7
C4—C5—H5120.1N8—C17—N6110.6 (2)
C5—C6—C1119.09 (19)N8—C17—H17124.7
C5—C6—H6120.5N6—C17—H17124.7
C1—C6—H6120.5N7—C18—N8115.9 (2)
O6—C7—N2107.66 (16)N7—C18—H18122.1
O6—C7—H7A110.2N8—C18—H18122.1
N2—C7—H7A110.2O1—N1—O2123.24 (19)
O6—C7—H7B110.2O1—N1—C1118.48 (18)
N2—C7—H7B110.2O2—N1—C1118.28 (19)
H7A—C7—H7B108.5C8—N2—N3109.30 (18)
N4—C8—N2111.6 (2)C8—N2—C7129.31 (19)
N4—C8—H8124.2N3—N2—C7121.39 (17)
N2—C8—H8124.2C9—N3—N2101.46 (18)
N3—C9—N4115.9 (2)C8—N4—C9101.73 (19)
N3—C9—H9122.1O3—N5—O4123.3 (2)
N4—C9—H9122.1O3—N5—C10117.9 (2)
C11—C10—C15121.9 (2)O4—N5—C10118.8 (2)
C11—C10—N5119.8 (2)C17—N6—N7109.65 (18)
C15—C10—N5118.3 (2)C17—N6—C16129.68 (19)
C10—C11—C12119.4 (2)N7—N6—C16120.66 (18)
C10—C11—H11120.3C18—N7—N6101.97 (19)
C12—C11—H11120.3C17—N8—C18101.9 (2)
C11—C12—C13119.25 (19)N1—O2—H16A132.4
C11—C12—H12120.4C13—O5—C16117.61 (16)
C13—C12—H12120.4C4—O6—C7116.82 (16)
O5—C13—C12124.62 (18)
C6—C1—C2—C3−0.1 (3)O6—C7—N2—C8−96.5 (2)
N1—C1—C2—C3178.99 (17)O6—C7—N2—N384.1 (2)
C1—C2—C3—C4−1.1 (3)N4—C9—N3—N2−0.1 (2)
C2—C3—C4—O6−176.99 (18)C8—N2—N3—C90.2 (2)
C2—C3—C4—C51.8 (3)C7—N2—N3—C9179.73 (17)
O6—C4—C5—C6177.62 (18)N2—C8—N4—C90.1 (2)
C3—C4—C5—C6−1.3 (3)N3—C9—N4—C80.0 (3)
C4—C5—C6—C10.1 (3)C11—C10—N5—O3−4.4 (3)
C2—C1—C6—C50.6 (3)C15—C10—N5—O3174.4 (2)
N1—C1—C6—C5−178.46 (17)C11—C10—N5—O4175.75 (19)
C15—C10—C11—C120.6 (3)C15—C10—N5—O4−5.5 (3)
N5—C10—C11—C12179.39 (18)N8—C17—N6—N7−0.4 (2)
C10—C11—C12—C130.0 (3)N8—C17—N6—C16−178.74 (19)
C11—C12—C13—O5178.33 (19)O5—C16—N6—C1794.9 (2)
C11—C12—C13—C14−1.2 (3)O5—C16—N6—N7−83.2 (2)
O5—C13—C14—C15−177.77 (19)N8—C18—N7—N6−0.2 (2)
C12—C13—C14—C151.8 (3)C17—N6—N7—C180.3 (2)
C13—C14—C15—C10−1.2 (3)C16—N6—N7—C18178.84 (18)
C11—C10—C15—C140.0 (3)N6—C17—N8—C180.3 (2)
N5—C10—C15—C14−178.81 (19)N7—C18—N8—C17−0.1 (3)
C2—C1—N1—O15.4 (3)C12—C13—O5—C160.5 (3)
C6—C1—N1—O1−175.47 (19)C14—C13—O5—C16−179.93 (18)
C2—C1—N1—O2−174.71 (18)N6—C16—O5—C13−176.10 (17)
C6—C1—N1—O24.4 (3)C3—C4—O6—C75.8 (3)
N4—C8—N2—N3−0.2 (2)C5—C4—O6—C7−173.07 (17)
N4—C8—N2—C7−179.68 (19)N2—C7—O6—C4167.68 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.593.367 (3)141
C14—H14···O3i0.932.413.249 (3)150
C17—H17···N4ii0.932.563.351 (3)144

Symmetry codes: (i) x, y−1, z; (ii) x−1/2, −y−1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LN2005).

References

  • Bruker (2001). SAINT-Plus, SMART and SHELXTL Bruker AXS Inc., Madison, Wisconsin, USA.
  • Jin, C.-M., Chen, C.-Y., Wang, W.-D. & Zhou, X.-W. (2006). Acta Cryst. E62, o5381–o5382.
  • Jin, C. M., Ye, C., Piekarski, C., Twamley, B. & Shreeve, J. M. (2005). Eur. J. Inorg. Chem. pp. 3760–3767.
  • Sheldrick, G. M. (1996). SADABS Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Wang, R., Gao, H., Ye, C. & Shreeve, J. M. (2007). Chem. Mater.19, 144–152.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography