PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o16.
Published online 2007 December 6. doi:  10.1107/S1600536807060990
PMCID: PMC2914978

(3-Nitro­phen­yl)methanediyl diacetate

Abstract

In the title compound, C11H11NO6, only weak van der Waals inter­actions are found in the mol­ecular packing. The compound is an efficient catalyst for the acetalization of the carbonyl group of aldehydes in nearly quantative yield.

Related literature

For background literature on silica-based sulfonic acid as catalyst in solvent-free acetalization, see: Karimi et al. (2000 [triangle]); Kumar et al. (2006 [triangle]); Smith & Reddy (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o16-scheme1.jpg

Experimental

Crystal data

  • C11H11NO6
  • M r = 253.21
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o16-efi1.jpg
  • a = 7.8959 (9) Å
  • b = 8.4779 (10) Å
  • c = 9.7788 (13) Å
  • α = 109.094 (11)°
  • β = 98.031 (10)°
  • γ = 99.963 (10)°
  • V = 595.55 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 290 (2) K
  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Stoe IPDS diffractometer
  • Absorption correction: none
  • 3869 measured reflections
  • 2149 independent reflections
  • 1224 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.098
  • S = 0.91
  • 2149 reflections
  • 166 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: IPDS Software (Stoe & Cie, 1997 [triangle]); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2001 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060990/ng2384sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060990/ng2384Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a grant from the University of Tehran and the University of Alzahra.

supplementary crystallographic information

Comment

Protection of aldehydes is important in organic chemistry. Many procedures have been done for this aim. In this work, silica based sulfonic acid was used as catalyst in solvent free condition for the acetalization of 3-nitro-benzaldehyde (Karimi, et al., 2000; Kumar, et al., 2006; Smith, & Reddy, 2003). The time of reaction was just 10 minutes at room temperature and the yield of reaction was more than 96%. Therefore, this catalyst was very efficient catalyst for acetalization of the carbonyl group of aldehydes.

The moleculare structure of (I) and the atom-numbering scheme are shown in Fig. 1. The nitro (NO2) group is twisted regarding to phenyl ring by torsion angles of O3–N1–C3–C8, 4.8 (3)° and O6–N1–C3–C2, 7.1 (3)°. The methyne carbon are connected to two acetate ions and phenyl ring in a distorted tetrahedral configuration. The structure of the title compound was corroborated by IR and 1H NMR spectroscopies.

Experimental

The catalyst (0.02 gr) was activated under vacuum at 100 °C followed by cooling to room temperature and then 3-nitro-benzaldehyde (3 mmol) was added to the catalyst. The mixture was stirred for two minutes and acetic anhydride (0.6 ml) was then added and stirred for 10 more minutes. The obtained solid was diluted with dichloromethane and filtered to remove the catalyst. The organic layer was washed with saturated NaHCO3 solution and dried with Na2SO4. The solvent was evaporated under reduced pressure to obtain the title compound in yield of 96%. Crystals suitable for crystallography was obtained by crystallization from CH2Cl2.

Refinement

All H atoms were geometrically positioned and constrained to ride on their parent atoms, with Uiso(H) = 1.2 and 1.5 for Ueq(CH and CH3, respectively).

Figures

Fig. 1.
Molecular structure of (I), with 50% probability displacement ellipsoids. H atoms are shown as circles of arbitrary radii.

Crystal data

C11H11NO6Z = 2
Mr = 253.21F000 = 264
Triclinic, P1Dx = 1.412 Mg m3
Hall symbol: -P 1Mo Kα radiation λ = 0.71073 Å
a = 7.8959 (9) ÅCell parameters from 1543 reflections
b = 8.4779 (10) Åθ = 3.5–25.5º
c = 9.7788 (13) ŵ = 0.12 mm1
α = 109.094 (11)ºT = 290 (2) K
β = 98.031 (10)ºBlock shape, colorless
γ = 99.963 (10)º0.3 × 0.2 × 0.2 mm
V = 595.55 (13) Å3

Data collection

STOE IPDS diffractometer1224 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Monochromator: graphiteθmax = 25.5º
T = 290(2) Kθmin = 3.8º
Area detector – phi oscillation scansh = −9→8
Absorption correction: nonek = −7→10
3869 measured reflectionsl = −11→11
2149 independent reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036  w = 1/[σ2(Fo2) + (0.0565P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.098(Δ/σ)max < 0.001
S = 0.91Δρmax = 0.19 e Å3
2149 reflectionsΔρmin = −0.14 e Å3
166 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.100 (9)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.30507 (14)0.16974 (14)−0.04836 (12)0.0445 (3)
O20.59909 (14)0.22011 (14)0.05498 (12)0.0457 (4)
O30.16732 (19)0.6263 (2)0.60185 (17)0.0836 (5)
O40.43191 (18)0.23344 (17)−0.22188 (14)0.0668 (4)
O50.75926 (17)0.47383 (18)0.07041 (18)0.0791 (5)
O60.1787 (2)0.7027 (2)0.4140 (2)0.1013 (6)
N10.2009 (2)0.6066 (2)0.4801 (2)0.0651 (5)
C10.4464 (2)0.2888 (2)0.06532 (17)0.0404 (4)
H10.46760.40040.05330.048*
C20.3243 (2)0.4433 (2)0.27690 (19)0.0440 (5)
H20.31530.52600.23470.053*
C30.2703 (2)0.4571 (2)0.40713 (19)0.0479 (5)
C40.3077 (3)0.1635 (2)−0.1894 (2)0.0485 (5)
C50.3922 (2)0.3050 (2)0.20946 (17)0.0394 (4)
C60.4043 (2)0.1838 (2)0.2739 (2)0.0501 (5)
H60.44940.09010.22870.060*
C70.7489 (2)0.3270 (3)0.0531 (2)0.0500 (5)
C80.2821 (2)0.3387 (3)0.4739 (2)0.0580 (5)
H80.24560.35120.56250.070*
C90.3497 (2)0.2009 (3)0.4059 (2)0.0595 (5)
H90.35870.11880.44870.071*
C100.1372 (3)0.0604 (3)−0.2909 (2)0.0687 (6)
H10A0.15730.0030−0.38750.103*
H10B0.06000.1348−0.29730.103*
H10C0.0842−0.0233−0.25350.103*
C110.8926 (2)0.2351 (3)0.0284 (3)0.0726 (7)
H11A0.94360.22460.11920.109*
H11B0.98120.2985−0.00390.109*
H11C0.84570.1228−0.04590.109*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0425 (7)0.0528 (8)0.0365 (7)0.0072 (6)0.0073 (6)0.0162 (6)
O20.0396 (7)0.0477 (7)0.0545 (8)0.0125 (6)0.0163 (6)0.0208 (6)
O30.0737 (11)0.1055 (12)0.0530 (9)0.0200 (9)0.0252 (8)0.0001 (9)
O40.0720 (10)0.0778 (10)0.0515 (8)0.0062 (8)0.0219 (8)0.0267 (8)
O50.0537 (9)0.0547 (9)0.1318 (14)0.0070 (7)0.0210 (9)0.0398 (9)
O60.1370 (17)0.0995 (14)0.0925 (13)0.0722 (13)0.0492 (12)0.0343 (12)
N10.0562 (11)0.0744 (13)0.0545 (12)0.0175 (9)0.0168 (9)0.0068 (10)
C10.0376 (10)0.0417 (10)0.0424 (10)0.0089 (8)0.0088 (8)0.0159 (8)
C20.0395 (10)0.0474 (11)0.0420 (11)0.0066 (8)0.0068 (8)0.0147 (9)
C30.0360 (10)0.0582 (12)0.0415 (11)0.0068 (9)0.0086 (8)0.0097 (9)
C40.0571 (13)0.0512 (11)0.0413 (12)0.0190 (10)0.0143 (10)0.0172 (9)
C50.0327 (10)0.0457 (10)0.0362 (10)0.0047 (8)0.0040 (8)0.0136 (8)
C60.0487 (11)0.0535 (11)0.0526 (12)0.0128 (9)0.0126 (9)0.0238 (9)
C70.0397 (11)0.0588 (13)0.0508 (12)0.0049 (10)0.0111 (9)0.0214 (10)
C80.0499 (12)0.0771 (14)0.0444 (11)0.0082 (11)0.0127 (10)0.0206 (11)
C90.0589 (13)0.0731 (14)0.0570 (12)0.0124 (11)0.0149 (11)0.0375 (11)
C100.0693 (15)0.0789 (15)0.0459 (12)0.0100 (12)0.0025 (11)0.0145 (11)
C110.0469 (13)0.0767 (15)0.0971 (18)0.0168 (11)0.0275 (12)0.0290 (13)

Geometric parameters (Å, °)

O1—C41.366 (2)C4—C101.488 (3)
O1—C11.4249 (19)C5—C61.380 (2)
O2—C71.367 (2)C6—C91.388 (2)
O2—C11.4287 (18)C6—H60.9300
O3—N11.221 (2)C7—C111.487 (2)
O4—C41.193 (2)C8—C91.378 (2)
O5—C71.187 (2)C8—H80.9300
O6—N11.215 (2)C9—H90.9300
N1—C31.474 (2)C10—H10A0.9600
C1—C51.500 (2)C10—H10B0.9600
C1—H10.9800C10—H10C0.9600
C2—C31.374 (2)C11—H11A0.9600
C2—C51.381 (2)C11—H11B0.9600
C2—H20.9300C11—H11C0.9600
C3—C81.374 (3)
C4—O1—C1116.57 (13)C5—C6—H6119.8
C7—O2—C1116.69 (13)C9—C6—H6119.8
O6—N1—O3123.62 (18)O5—C7—O2122.99 (17)
O6—N1—C3117.60 (17)O5—C7—C11125.89 (18)
O3—N1—C3118.8 (2)O2—C7—C11111.12 (17)
O1—C1—O2107.75 (12)C3—C8—C9118.09 (17)
O1—C1—C5106.49 (12)C3—C8—H8121.0
O2—C1—C5111.36 (13)C9—C8—H8121.0
O1—C1—H1110.4C8—C9—C6120.49 (18)
O2—C1—H1110.4C8—C9—H9119.8
C5—C1—H1110.4C6—C9—H9119.8
C3—C2—C5119.16 (16)C4—C10—H10A109.5
C3—C2—H2120.4C4—C10—H10B109.5
C5—C2—H2120.4H10A—C10—H10B109.5
C8—C3—C2122.43 (17)C4—C10—H10C109.5
C8—C3—N1118.60 (18)H10A—C10—H10C109.5
C2—C3—N1118.95 (18)H10B—C10—H10C109.5
O4—C4—O1122.89 (18)C7—C11—H11A109.5
O4—C4—C10126.65 (18)C7—C11—H11B109.5
O1—C4—C10110.46 (16)H11A—C11—H11B109.5
C6—C5—C2119.45 (16)C7—C11—H11C109.5
C6—C5—C1121.85 (15)H11A—C11—H11C109.5
C2—C5—C1118.68 (15)H11B—C11—H11C109.5
C5—C6—C9120.38 (18)
C4—O1—C1—O2−74.57 (15)C3—C2—C5—C1178.43 (15)
C4—O1—C1—C5165.86 (13)O1—C1—C5—C679.55 (18)
C7—O2—C1—O1129.88 (14)O2—C1—C5—C6−37.7 (2)
C7—O2—C1—C5−113.68 (15)O1—C1—C5—C2−98.83 (16)
C5—C2—C3—C80.4 (3)O2—C1—C5—C2143.97 (14)
C5—C2—C3—N1178.90 (15)C2—C5—C6—C9−0.3 (2)
O6—N1—C3—C8−174.42 (18)C1—C5—C6—C9−178.70 (16)
O3—N1—C3—C84.8 (3)C1—O2—C7—O55.7 (3)
O6—N1—C3—C27.1 (3)C1—O2—C7—C11−174.89 (14)
O3—N1—C3—C2−173.74 (16)C2—C3—C8—C9−0.5 (3)
C1—O1—C4—O410.7 (2)N1—C3—C8—C9−179.01 (15)
C1—O1—C4—C10−169.00 (14)C3—C8—C9—C60.2 (3)
C3—C2—C5—C60.0 (2)C5—C6—C9—C80.2 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2384).

References

  • Brandenburg, K. (2001). DIAMOND. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
  • Karimi, B., Seradj, H. & Ebrahimian, R. G. (2000). Synlett, 5, o623–o624.
  • Kumar, R., Thilagavathi, R., Gulhane, R. & Chakraborti, A. K. (2006). J. Mol. Catal. A Chem.250, 226–231.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Smith, G. & Reddy, C. S. (2003). Tetrahedron, 59, 9571–9576.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1997). X-SHAPE (Version 1.02) and X-RED (Version 1.09). Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography