PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o15.
Published online 2007 December 6. doi:  10.1107/S1600536807061223
PMCID: PMC2914977

Ethyl 3-benzoyl-2-hydroxy­prop-2-enoate

Abstract

In the title compound, C12H12O4, the dihedral angle between the plane through the phenyl ring and the mean plane of the side chain is approximately 14°. The mol­ecules, which contain an intra­molecular O—H(...)O hydrogen bond, are linked end-to-end by weak C—H(...)O inter­molecular hydrogen-bonding contacts, forming infinite one-dimensional chain systems in the crystal structure.

Related literature

For related literature, see: Davey & Ribbons (1975 [triangle]); Emerson et al. (1991 [triangle]); Aliev et al. (2000a [triangle],b [triangle]); Bernstein et al. (1995 [triangle]); Desiraju & Steiner (2001 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o15-scheme1.jpg

Experimental

Crystal data

  • C12H12O4
  • M r = 220.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o15-efi1.jpg
  • a = 9.872 (4) Å
  • b = 13.498 (5) Å
  • c = 8.843 (3) Å
  • β = 105.464 (6)°
  • V = 1135.7 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 294 (2) K
  • 0.26 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.975, T max = 0.981
  • 6252 measured reflections
  • 2316 independent reflections
  • 1405 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.151
  • S = 1.02
  • 2316 reflections
  • 147 parameters
  • 2 restraints
  • H-atom parameters constraned
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807061223/si2049sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061223/si2049Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Tianjin Natural Science Foundation (No. 07JCYBJC09300).

supplementary crystallographic information

Comment

1,3-Diketones are substrates for carbon-carbon bond hydrolysis by beta-ketolases. The 2,4-diketo acids examined for hydrolysis by acetopyruvate hydrolase from rat liver (EC 3.7.1.5) all have aliphatic side chains.(Davey & Ribbons, 1975) The acetopyruvate hydrolases cleave 2,4-diketopentanoic acid into pyruvate and acetate (Emerson et al., 1991). Cleavage of analogues such as 2,4-diketo-4-phenylbutanoic acid was not reported. In order to discover the hydrolysis process of analogues, the title compound was synthesized.

In the title compound, the C—O and C—C bond lengths are in the normal range, and the dihedral angle between the plane of the phenyl ring and the mean plane of the side chain is approximately 14 °. The corresponding torsion angle C1—C6—C7—C8 is -14.0 (3) °. The molecule contains the typical O—H···O intra-molecular hydrogen bond graph set S(6) (Bernstein et al., 1995). As shown in Figure 2, these monomers are associated end-to-end to form the R22(10) ring system, which is generated by different weak C—H···O hydrogen bonds (Table 1). These hydrogen bonds connect the molecules due to translational symmetry to assembly a chain system along the c direction. Similarly, the S(6) intra-molecular hydrogen bond type is also observed in 2-hydroxy-4-oxo-4-phenyl-3(Z)-butenic acid and 4-hydroxy-2-oxo-6-phenyl-3(Z),5(E)-hexadienic acid, but the monomer of the former is extended by the R22(8) (Bernstein et al. 1995) inter-molecular H-bonds, related by a centre of inversion to form a two-dimensional layer with head-to-tail packing architecture (Aliev et al., 2000a,b). Head-to-tail packing is also observed in the structure of the title compound, and long H···O distances (Table 1) in weak intermolecular C—H···O contacts are extensively discussed in the literature (Desiraju & Steiner, 2001).

Experimental

Sodium (2.3 g, 103 mmol) was added to absolute ethanol (133 ml). The mixture was cooled to -273 K and a mixture of diethyl oxalate (14.0 g, 96 mmol) and the ketone (96 mmol) was added slowly over a period of 20 min. A precipitate formed and stirring was continued for 4 h at room temperature. The precipitate was filtered, washed with absolute ethanol (20 ml) and dissolved in 2 N sulfuric acid (150 ml) and ether-extracted (3x150 ml), dried over Na2SO4 and ether removed. The residue was distilled under reduced pressure. The residue was recrystallized from ethanol and single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from acetone at room temperature. Elemental analysis (%) calcd for 1, C18H22CuN4O8: C 65.45, H 5.49; found: C 65.52, H 5.54.

Refinement

H atoms were positioned geometrically and treated as riding with distances C–H = 0.93–0.97 Å, and O–H = 0.82 Å. The respective Uiso(H)=1.2Ueq(aromatic C and CH2), Uiso(H)=1.5Ueq(CH3), Uiso(H)=1.5(Ueq)(hydroxyl O).

Figures

Fig. 1.
An ORTEP view of the labelled title molecule with 30% thermal ellipsoids. The intramolecular hydrogen bond is indicated by a dashed line.
Fig. 2.
View of the one-dimensional weak hydrogen bonded chain structure.

Crystal data

C12H12O4F000 = 464
Mr = 220.22Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1800 reflections
a = 9.872 (4) Åθ = 2.6–26.2º
b = 13.498 (5) ŵ = 0.10 mm1
c = 8.843 (3) ÅT = 294 (2) K
β = 105.464 (6)ºBlock, yellow
V = 1135.7 (7) Å30.26 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2316 independent reflections
Radiation source: fine-focus sealed tube1405 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.028
T = 294(2) Kθmax = 26.4º
phi and ω scansθmin = 2.1º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −12→11
Tmin = 0.975, Tmax = 0.981k = −16→15
6252 measured reflectionsl = −9→10

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.151  w = 1/[σ2(Fo2) + (0.0635P)2 + 0.3304P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2316 reflectionsΔρmax = 0.20 e Å3
147 parametersΔρmin = −0.21 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.58450 (15)0.67082 (13)0.25001 (17)0.0695 (5)
O20.43270 (15)0.65232 (14)0.43639 (17)0.0714 (5)
H2A0.45060.66510.35310.107*
O30.62879 (18)0.56869 (16)0.80268 (18)0.0871 (6)
O40.40548 (14)0.61835 (11)0.71546 (15)0.0558 (4)
C10.9543 (2)0.62744 (16)0.4355 (3)0.0589 (6)
H10.95470.62900.54070.071*
C21.0792 (2)0.6156 (2)0.3952 (3)0.0708 (7)
H21.16330.60990.47320.085*
C31.0797 (3)0.61223 (19)0.2404 (3)0.0726 (7)
H31.16360.60250.21360.087*
C40.9558 (3)0.6232 (2)0.1241 (3)0.0721 (7)
H40.95660.62160.01920.087*
C50.8304 (2)0.63658 (17)0.1634 (3)0.0603 (6)
H50.74730.64530.08490.072*
C60.8285 (2)0.63697 (14)0.3204 (2)0.0479 (5)
C70.6913 (2)0.64484 (15)0.3590 (2)0.0490 (5)
C80.6759 (2)0.62196 (16)0.5096 (2)0.0516 (5)
H8A0.75520.60220.59260.062*
C90.5473 (2)0.62671 (15)0.5400 (2)0.0497 (5)
C100.5333 (2)0.60126 (17)0.7012 (2)0.0536 (5)
C110.3828 (2)0.5971 (2)0.8685 (2)0.0641 (6)
H11A0.44890.63410.94960.077*
H11B0.39620.52700.89200.077*
C120.2353 (3)0.6269 (2)0.8617 (3)0.0833 (8)
H12A0.22390.69660.84050.125*
H12B0.21640.61260.96040.125*
H12C0.17100.59060.77990.125*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0472 (9)0.1101 (13)0.0500 (9)0.0117 (8)0.0109 (7)0.0164 (9)
O20.0429 (9)0.1209 (15)0.0501 (9)0.0102 (8)0.0119 (7)0.0166 (9)
O30.0623 (11)0.1483 (18)0.0514 (10)0.0333 (11)0.0161 (8)0.0217 (10)
O40.0470 (8)0.0774 (10)0.0453 (8)0.0045 (7)0.0163 (6)0.0043 (7)
C10.0463 (12)0.0808 (16)0.0507 (12)0.0012 (11)0.0151 (10)0.0017 (11)
C20.0464 (13)0.1006 (19)0.0671 (15)0.0019 (12)0.0183 (11)0.0075 (13)
C30.0546 (15)0.0928 (19)0.0803 (17)0.0009 (13)0.0353 (13)0.0072 (14)
C40.0713 (17)0.0946 (19)0.0593 (14)−0.0037 (13)0.0326 (13)0.0025 (13)
C50.0531 (13)0.0767 (16)0.0518 (13)0.0000 (11)0.0150 (10)0.0068 (11)
C60.0455 (12)0.0522 (12)0.0480 (11)−0.0005 (9)0.0159 (9)0.0019 (9)
C70.0419 (11)0.0555 (12)0.0492 (12)0.0020 (9)0.0117 (9)−0.0019 (9)
C80.0420 (12)0.0697 (14)0.0424 (11)0.0090 (9)0.0101 (9)0.0013 (10)
C90.0448 (11)0.0597 (13)0.0430 (11)0.0042 (9)0.0093 (9)−0.0018 (9)
C100.0456 (12)0.0693 (14)0.0455 (12)0.0050 (10)0.0115 (10)−0.0013 (10)
C110.0679 (15)0.0823 (16)0.0462 (12)0.0021 (12)0.0220 (11)0.0012 (11)
C120.0776 (18)0.104 (2)0.0825 (18)0.0151 (15)0.0469 (15)0.0085 (15)

Geometric parameters (Å, °)

O1—C71.274 (2)C4—H40.9300
O2—C91.299 (2)C5—C61.394 (3)
O2—H2A0.8200C5—H50.9300
O3—C101.199 (2)C6—C71.486 (3)
O4—C101.321 (2)C7—C81.415 (3)
O4—C111.458 (2)C8—C91.367 (3)
C1—C21.381 (3)C8—H8A0.9572
C1—C61.386 (3)C9—C101.509 (3)
C1—H10.9300C11—C121.496 (3)
C2—C31.371 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.380 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—C51.383 (3)C12—H12C0.9600
C9—O2—H2A109.5C8—C7—C6122.28 (18)
C10—O4—C11116.17 (16)C9—C8—C7120.88 (19)
C2—C1—C6120.5 (2)C9—C8—H8A118.4
C2—C1—H1119.7C7—C8—H8A120.8
C6—C1—H1119.7O2—C9—C8123.66 (19)
C3—C2—C1120.2 (2)O2—C9—C10116.41 (18)
C3—C2—H2119.9C8—C9—C10119.93 (18)
C1—C2—H2119.9O3—C10—O4125.0 (2)
C2—C3—C4120.2 (2)O3—C10—C9122.62 (19)
C2—C3—H3119.9O4—C10—C9112.41 (17)
C4—C3—H3119.9O4—C11—C12107.37 (18)
C3—C4—C5120.1 (2)O4—C11—H11A110.2
C3—C4—H4119.9C12—C11—H11A110.2
C5—C4—H4119.9O4—C11—H11B110.2
C4—C5—C6120.1 (2)C12—C11—H11B110.2
C4—C5—H5120.0H11A—C11—H11B108.5
C6—C5—H5120.0C11—C12—H12A109.5
C1—C6—C5118.92 (19)C11—C12—H12B109.5
C1—C6—C7122.10 (19)H12A—C12—H12B109.5
C5—C6—C7118.96 (19)C11—C12—H12C109.5
O1—C7—C8119.81 (18)H12A—C12—H12C109.5
O1—C7—C6117.88 (18)H12B—C12—H12C109.5
C6—C1—C2—C3−0.6 (4)O1—C7—C8—C90.4 (3)
C1—C2—C3—C41.7 (4)C6—C7—C8—C9−177.77 (19)
C2—C3—C4—C5−0.7 (4)C7—C8—C9—O2−0.4 (3)
C3—C4—C5—C6−1.3 (4)C7—C8—C9—C10179.55 (19)
C2—C1—C6—C5−1.4 (3)C11—O4—C10—O31.2 (3)
C2—C1—C6—C7176.9 (2)C11—O4—C10—C9−179.21 (18)
C4—C5—C6—C12.3 (3)O2—C9—C10—O3173.6 (2)
C4—C5—C6—C7−176.0 (2)C8—C9—C10—O3−6.3 (3)
C1—C6—C7—O1167.8 (2)O2—C9—C10—O4−6.0 (3)
C5—C6—C7—O1−13.9 (3)C8—C9—C10—O4174.08 (19)
C1—C6—C7—C8−14.0 (3)C10—O4—C11—C12176.8 (2)
C5—C6—C7—C8164.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2A···O10.821.802.518 (2)146
C5—H5···O3i0.932.673.405 (3)137
C11—H11A···O1ii0.972.683.571 (4)153

Symmetry codes: (i) x, y, z−1; (ii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2049).

References

  • Aliev, Z. G., Shurov, S. N., Nekrasov, D. D., Podvintsev, I. B. & Atovmyan, L. O. (2000a). Zh. Strukt. Khim.41, 1255–1260.
  • Aliev, Z. G., Shurov, S. N., Nekrasov, D. D., Podvintsev, I. B. & Atovmyan, L. O. (2000b). J. Struct. Chem, 41, 1041–1045.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker, (1998). SMART-NT and SAINT-NT Version 5.1. Bruker AXS Madison, Wisconsin, USA.
  • Davey, J. F. & Ribbons, D. W. (1975). J. Biol. Chem.250, 3826–3830. [PubMed]
  • Desiraju, G. R. & Steiner, T. (2001). The Weak Hydrogen Bond in Structural Chemistry and Biology, pp. 100–112. IUCr Monograph on Crystallography 9. Oxford University Press.
  • Emerson, D. W., Titus, R. L. & Gonzáles, R. M. (1991). J. Org. Chem.56, 5301–5307.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography