PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o14.
Published online 2007 December 6. doi:  10.1107/S1600536807061211
PMCID: PMC2914976

6-[(5-tert-Butyl-2-hydroxy­anilino)methyl­ene]cyclo­hexa-2,4-dienone

Abstract

In the title compound, C17H19NO2, the dihedral angle between the two aromatic rings is 26.02 (5)°. One phenol O atom is deprotonated and the N atom of the azomethine unit carries the H atom, forming an intra­molecular hydrogen bond. The packing is stabilized by an O—H(...)O hydrogen bond.

Related literature

Aromatic Schiff bases with ortho-hydr­oxy groups are useful as acyclic polydentate ligands for the preparation of chelate complexes with a wide variety of metal ions (Freeman & White, 1956 [triangle]; Calligaris & Randaccio, 1987 [triangle]; Pettinari et al., 2001 [triangle]; Hernández-Molina & Mederos, 2004 [triangle]). For related literature, see: Böhme & Günther (2006 [triangle], 2007 [triangle]); Böhme, Wiesner & Günther (2006 [triangle]); Dubs et al. (2000 [triangle]); Hopfl et al. (1998 [triangle]); Nazir et al. (2000 [triangle]); Pradeep (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o14-scheme1.jpg

Experimental

Crystal data

  • C17H19NO2
  • M r = 269.33
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o14-efi1.jpg
  • a = 10.3600 (4) Å
  • b = 9.5756 (3) Å
  • c = 14.7335 (6) Å
  • β = 99.664 (2)°
  • V = 1440.87 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 153 (2) K
  • 0.5 × 0.37 × 0.25 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 14317 measured reflections
  • 3478 independent reflections
  • 2819 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.108
  • S = 1.08
  • 3478 reflections
  • 193 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061211/bt2630sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061211/bt2630Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Recently, we are working on silicon and titanium complexes with tridentate O,N,O-ligands (Böhme & Günther, 2006; Böhme, Wiesner & Günther, 2006; Böhme & Günther, 2007). The title compound, C17H19NO2, was prepared in order to extend the series of available ligands. The preparation of the title compound was performed according to methods described in the literature for the parent compound salicyclidene-o-aminophenol ("salopH2") (Freeman and White, 1956; Pettinari et al., 2001) by reaction of salicyclaldehyde and 2-amino-4-tert-butylphenol in ethanol. The molecule is non-planar with a dihedral angle between the two aromatic rings of 26.02 (5)°. The atom H3 forms an intramolecular hydrogen bond between the phenolic oxygen atom O1 and N1 of the azomethine unit. The hydrogen atom H3 is localized at a distance of 0.94 (2) Å from N1. This hints to the presence of the keto-amine form. The presence of a quinoidal structure is further supported by the shortening of the bond O1—C3 to 1.296 (1) Å and the lengthening of the adjacent C—C bonds in the phenyl ring [C2—C3 1.437 (2), C3—C4 1.426 (2) Å] (Nazir et al., 2000). There are few structure reports of Schiff-bases with oxygen in ortho-position where the intramolecular bridging hydrogen atom is localized at the nitrogen atom (e.g. Pradeep, 2005; Dubs et al., 2000; Hopfl et al., 1998). The crystal packing is stabilized by a hydrogen bond O2—H2···O1 forming a helix along the crystallographic 21 axis.

Experimental

2-Amino-4-tert-butylphenol (3.07 g, 18.6 mmol) was dissolved in ethanol (100 ml). This solution was heated slowly to 313 K and after a few minutes salicylaldehyde (2.27 g, 1.96 ml, 18.6 mmol) was added with a syringe. The reaction mixture was boiled at reflux temperature for 1.5 h. After that time a red solution was formed. The solution was concentrated in a vacuum to a small volume (30 ml) until a red crystalline precipitate deposited. The precipitate was filtered off and washed with ethanol. After drying, the product was purified by recrystallization with ethanol. Red prisms (4.38 g, 87.6%, m.p. 415 K). NMR (CDCl3, 300 K, TMS): 1H: δ=12,37 (s, OH), 8.64 (s, CH—N), 7.41–6.92 (m, CHaromatic), 1.33 (s, C(CH3)3); 13C: 163.5 (C1), 160.5 (C3), 147.4 (C9), 144.0 (C12), 135.0, 133.4, 132.5, 125.6, 119.4, 119.3, 117.2, 115.4, 115.4 (9 signals for aromatic C), 34.3 (C14), 31.5 (C15—C17).

Refinement

Hydrogen atoms bonded to C were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å for Csp2 and 0.98 for methyl. Uiso(H) = xUeq(C), where x = 1.2 for Csp2 and 1.5 for methyl. The amino H atom was located by difference Fourier synthesis and freely refined.

Figures

Fig. 1.
The molecular structure of the title compound, drawn with 50% probability displacement ellipsoids.

Crystal data

C17H19NO2F000 = 576
Mr = 269.33Dx = 1.242 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5301 reflections
a = 10.3600 (4) Åθ = 2.8–30.5º
b = 9.5756 (3) ŵ = 0.08 mm1
c = 14.7335 (6) ÅT = 153 (2) K
β = 99.664 (2)ºBlock, orange
V = 1440.87 (9) Å30.5 × 0.37 × 0.25 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2819 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
Monochromator: graphiteθmax = 28.0º
T = 153(2) Kθmin = 2.6º
phi and ω scansh = −13→13
Absorption correction: nonek = −9→12
14317 measured reflectionsl = −19→16
3478 independent reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108  w = 1/[σ2(Fo2) + (0.0528P)2 + 0.3328P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3478 reflectionsΔρmax = 0.33 e Å3
193 parametersΔρmin = −0.22 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.59234 (8)0.06870 (8)1.16198 (5)0.0251 (2)
O20.43203 (9)0.39390 (9)1.20845 (6)0.0278 (2)
H20.41950.44711.25140.042*
N10.47127 (9)0.26094 (9)1.05548 (6)0.0194 (2)
H30.4953 (14)0.2185 (16)1.1133 (11)0.039 (4)*
C10.53484 (11)0.21410 (11)0.99239 (8)0.0199 (2)
H10.5173 (12)0.2582 (14)0.9312 (9)0.022 (3)*
C20.62986 (11)0.10555 (11)1.00874 (8)0.0198 (2)
C30.65831 (11)0.03867 (11)1.09717 (8)0.0207 (2)
C40.76261 (12)−0.06030 (12)1.10942 (9)0.0269 (3)
H40.7860−0.10561.16720.032*
C50.82989 (12)−0.09136 (13)1.03933 (10)0.0308 (3)
H50.8999−0.15661.05010.037*
C60.79790 (13)−0.02904 (13)0.95184 (10)0.0313 (3)
H60.8441−0.05350.90360.038*
C70.69883 (12)0.06762 (12)0.93748 (8)0.0252 (3)
H70.67620.10980.87860.030*
C80.37998 (10)0.37285 (11)1.04619 (7)0.0187 (2)
C90.36246 (11)0.44028 (11)1.12805 (8)0.0203 (2)
C100.27440 (11)0.55129 (12)1.12145 (8)0.0227 (2)
H100.26260.60061.17540.027*
C110.20359 (11)0.59050 (11)1.03643 (8)0.0213 (2)
H110.14350.66591.03390.026*
C120.21797 (10)0.52265 (11)0.95479 (7)0.0187 (2)
C130.30923 (11)0.41376 (11)0.96159 (8)0.0195 (2)
H130.32320.36680.90730.023*
C140.13591 (11)0.56085 (11)0.86144 (8)0.0211 (2)
C150.06649 (12)0.42959 (12)0.81692 (9)0.0273 (3)
H15A0.00970.45530.75930.041*
H15B0.01350.38790.85910.041*
H15C0.13200.36190.80400.041*
C160.22489 (13)0.61849 (14)0.79661 (9)0.0313 (3)
H16A0.26790.70390.82300.047*
H16B0.17210.63960.73660.047*
H16C0.29140.54870.78890.047*
C170.03131 (12)0.67090 (13)0.87157 (9)0.0296 (3)
H17A0.07410.75740.89620.044*
H17B−0.02500.63610.91380.044*
H17C−0.02180.68940.81120.044*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0310 (4)0.0266 (4)0.0172 (4)0.0025 (3)0.0029 (3)0.0025 (3)
O20.0329 (5)0.0336 (5)0.0152 (4)0.0096 (4)−0.0004 (3)−0.0037 (3)
N10.0224 (5)0.0196 (4)0.0155 (5)0.0022 (3)0.0013 (4)0.0000 (3)
C10.0222 (5)0.0197 (5)0.0175 (5)−0.0008 (4)0.0031 (4)0.0008 (4)
C20.0208 (5)0.0184 (5)0.0202 (6)−0.0012 (4)0.0034 (4)−0.0004 (4)
C30.0226 (5)0.0180 (5)0.0206 (6)−0.0027 (4)0.0006 (4)−0.0005 (4)
C40.0282 (6)0.0210 (5)0.0289 (6)0.0014 (4)−0.0021 (5)0.0034 (4)
C50.0265 (6)0.0232 (6)0.0423 (8)0.0058 (5)0.0051 (5)0.0021 (5)
C60.0324 (7)0.0272 (6)0.0379 (7)0.0041 (5)0.0164 (6)−0.0002 (5)
C70.0285 (6)0.0243 (5)0.0244 (6)0.0009 (4)0.0086 (5)0.0016 (5)
C80.0191 (5)0.0186 (5)0.0184 (5)0.0005 (4)0.0035 (4)−0.0010 (4)
C90.0208 (5)0.0232 (5)0.0165 (5)−0.0007 (4)0.0019 (4)−0.0012 (4)
C100.0255 (6)0.0241 (5)0.0187 (6)0.0016 (4)0.0045 (4)−0.0045 (4)
C110.0219 (5)0.0198 (5)0.0227 (6)0.0019 (4)0.0046 (4)−0.0007 (4)
C120.0195 (5)0.0183 (5)0.0181 (5)−0.0023 (4)0.0024 (4)0.0018 (4)
C130.0228 (5)0.0199 (5)0.0160 (5)−0.0011 (4)0.0033 (4)−0.0022 (4)
C140.0231 (5)0.0198 (5)0.0191 (6)−0.0005 (4)0.0004 (4)0.0014 (4)
C150.0278 (6)0.0233 (5)0.0277 (6)−0.0006 (5)−0.0045 (5)−0.0011 (5)
C160.0345 (7)0.0371 (7)0.0216 (6)−0.0056 (5)0.0026 (5)0.0061 (5)
C170.0339 (6)0.0242 (6)0.0281 (7)0.0071 (5)−0.0022 (5)0.0029 (5)

Geometric parameters (Å, °)

O1—C31.296 (1)C9—C101.3935 (15)
O2—C91.354 (1)C10—C111.3928 (16)
O2—H20.8400C10—H100.9500
N1—C11.3055 (14)C11—C121.3969 (16)
N1—C81.4206 (13)C11—H110.9500
N1—H30.94 (2)C12—C131.3998 (15)
C1—C21.4240 (15)C12—C141.5348 (15)
C1—H10.985 (13)C13—H130.9500
C2—C71.4131 (16)C14—C171.5367 (16)
C2—C31.437 (2)C14—C161.5369 (17)
C3—C41.426 (2)C14—C151.5392 (15)
C4—C51.3720 (19)C15—H15A0.9800
C4—H40.9500C15—H15B0.9800
C5—C61.4087 (19)C15—H15C0.9800
C5—H50.9500C16—H16A0.9800
C6—C71.3718 (17)C16—H16B0.9800
C6—H60.9500C16—H16C0.9800
C7—H70.9500C17—H17A0.9800
C8—C131.3920 (15)C17—H17B0.9800
C8—C91.4065 (15)C17—H17C0.9800
C9—O2—H2109.5C10—C11—C12122.20 (10)
C1—N1—C8126.71 (10)C10—C11—H11118.9
C1—N1—H3114.1 (9)C12—C11—H11118.9
C8—N1—H3119.0 (9)C11—C12—C13116.95 (10)
N1—C1—C2123.19 (10)C11—C12—C14122.52 (10)
N1—C1—H1117.9 (7)C13—C12—C14120.50 (10)
C2—C1—H1118.9 (7)C8—C13—C12121.43 (10)
C7—C2—C1118.90 (10)C8—C13—H13119.3
C7—C2—C3120.45 (10)C12—C13—H13119.3
C1—C2—C3120.62 (10)C12—C14—C17111.72 (9)
O1—C3—C4122.43 (10)C12—C14—C16110.04 (9)
O1—C3—C2121.04 (10)C17—C14—C16108.69 (10)
C4—C3—C2116.53 (11)C12—C14—C15109.64 (9)
C5—C4—C3121.25 (11)C17—C14—C15108.35 (9)
C5—C4—H4119.4C16—C14—C15108.33 (10)
C3—C4—H4119.4C14—C15—H15A109.5
C4—C5—C6121.72 (11)C14—C15—H15B109.5
C4—C5—H5119.1H15A—C15—H15B109.5
C6—C5—H5119.1C14—C15—H15C109.5
C7—C6—C5118.81 (12)H15A—C15—H15C109.5
C7—C6—H6120.6H15B—C15—H15C109.5
C5—C6—H6120.6C14—C16—H16A109.5
C6—C7—C2121.16 (11)C14—C16—H16B109.5
C6—C7—H7119.4H16A—C16—H16B109.5
C2—C7—H7119.4C14—C16—H16C109.5
C13—C8—C9120.95 (10)H16A—C16—H16C109.5
C13—C8—N1122.72 (10)H16B—C16—H16C109.5
C9—C8—N1116.32 (9)C14—C17—H17A109.5
O2—C9—C10123.87 (10)C14—C17—H17B109.5
O2—C9—C8118.25 (10)H17A—C17—H17B109.5
C10—C9—C8117.88 (10)C14—C17—H17C109.5
C11—C10—C9120.55 (10)H17A—C17—H17C109.5
C11—C10—H10119.7H17B—C17—H17C109.5
C9—C10—H10119.7
C8—N1—C1—C2176.77 (10)C13—C8—C9—C10−1.48 (16)
N1—C1—C2—C7−176.40 (11)N1—C8—C9—C10179.50 (10)
N1—C1—C2—C31.59 (17)O2—C9—C10—C11−178.18 (11)
C7—C2—C3—O1−177.34 (10)C8—C9—C10—C111.92 (17)
C1—C2—C3—O14.69 (16)C9—C10—C11—C12−0.65 (18)
C7—C2—C3—C43.18 (16)C10—C11—C12—C13−1.09 (16)
C1—C2—C3—C4−174.79 (10)C10—C11—C12—C14177.18 (10)
O1—C3—C4—C5179.24 (11)C9—C8—C13—C12−0.27 (16)
C2—C3—C4—C5−1.29 (16)N1—C8—C13—C12178.69 (10)
C3—C4—C5—C6−1.08 (19)C11—C12—C13—C81.54 (16)
C4—C5—C6—C71.58 (19)C14—C12—C13—C8−176.77 (10)
C5—C6—C7—C20.38 (18)C11—C12—C14—C17−4.95 (15)
C1—C2—C7—C6175.20 (11)C13—C12—C14—C17173.26 (10)
C3—C2—C7—C6−2.80 (17)C11—C12—C14—C16115.87 (12)
C1—N1—C8—C1325.00 (17)C13—C12—C14—C16−65.91 (13)
C1—N1—C8—C9−156.00 (11)C11—C12—C14—C15−125.08 (11)
C13—C8—C9—O2178.62 (10)C13—C12—C14—C1553.14 (14)
N1—C8—C9—O2−0.40 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H3···O10.939 (16)1.83 (2)2.601 (1)137.8 (13)
O2—H2···O1i0.841.752.583 (1)174 (1)

Symmetry codes: (i) −x+1, y+1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2630).

References

  • Böhme, U. & Günther, B. (2006). Acta Cryst. E62, m1711–m1712.
  • Böhme, U. & Günther, B. (2007). Inorg. Chem. Commun.10, 482–484.
  • Böhme, U., Wiesner, S. & Günther, B. (2006). Inorg. Chem. Commun.9, 806–809.
  • Bruker (2004). SMART (Version 5.628) and SAINT (Version 6.45a). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, R. D. Gillard & J. A. McCleverty, pp. 715–738. Oxford: Pergamon Press.
  • Dubs, M., Krieg, R., Görls, H. & Schönecker, B. (2000). Steroids, 65, 305–318. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Freeman, D. C. & White, C. E. (1956). J. Am. Chem. Soc.78, 2678–2682.
  • Hernández-Molina, R. & Mederos, A. (2004). Comprehensive Coordination Chemistry II, Vol. 1, edited by J. A. McCleverty & T. J. Meyer, pp. 411–446. Amsterdam: Elsevier.
  • Hopfl, H., Sanchez, M., Barba, V., Farfan, N., Rojas, S. & Santillan, R. (1998). Inorg. Chem.37, 1679–1692.
  • Nazir, H., Yildiz, M., Yilmaz, H., Tahir, M. & Ülkü, D. (2000). J. Mol. Struct.524, 241–250.
  • Pettinari, C., Marchetti, F., Pettinari, R., Martini, D., Drozdov, A. & Troyanov, S. (2001). Inorg. Chim. Acta, 325, 103–114.
  • Pradeep, C. P. (2005). Acta Cryst. E61, o3825–o3827.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography