PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o11.
Published online 2007 December 6. doi:  10.1107/S1600536807060916
PMCID: PMC2914973

N-(3,4-Dimethyl­phen­yl)acetamide

Abstract

The conformation of the N—H bond in the title compound (34DMPA), C10H13NO, is syn to the 3-methyl substituent in the aromatic ring, in contrast to the anti conformation observed with respect to the 3-chloro substituent in N-(3,4-dichloro­phen­yl)acetamide (34DCPA). The asymmetric unit of the structure contains three mol­ecules. The bond parameters in 34DMPA are similar to those in 34DCPA, N-(2,6-dimethyl­phen­yl)acetamide, N-(3,5-dimethyl­phen­yl)acetamide and other acetanilides. The mol­ecules in 34DMPA are linked into infinite chains through N—H(...)O hydrogen bonding.

Related literature

For related literature, see: Gowda et al. (2007a [triangle],b [triangle]); Gowda, Kozisek, Svoboda & Fuess (2007 [triangle]); Gowda, Kožíšek, Tokarčík & Fuess (2007 [triangle]); Jones et al. (1990 [triangle]); Shilpa & Gowda (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o11-scheme1.jpg

Experimental

Crystal data

  • C10H13NO
  • M r = 163.21
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o11-efi1.jpg
  • a = 6.749 (1) Å
  • b = 14.281 (2) Å
  • c = 15.005 (2) Å
  • α = 85.33 (1)°
  • β = 79.81 (1)°
  • γ = 87.58 (1)°
  • V = 1418.1 (3) Å3
  • Z = 6
  • Cu Kα radiation
  • μ = 0.59 mm−1
  • T = 299 (2) K
  • 0.35 × 0.33 × 0.18 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 5528 measured reflections
  • 5025 independent reflections
  • 3386 reflections with I > 2σ(I)
  • R int = 0.044
  • 3 standard reflections frequency: 120 min intensity decay: 2.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.210
  • S = 1.03
  • 5025 reflections
  • 344 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.27 e Å−3

Data collection: CAD-4-PC Software (Enraf–Nonius, 1996 [triangle]); cell refinement: CAD-4-PC Software; data reduction: REDU4 (Stoe & Cie, 1987 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807060916/lw2051sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807060916/lw2051Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

B.T.G. thanks the Alexander von Humboldt Foundation, Bonn, Germany for extensions of his research fellowship.

supplementary crystallographic information

Comment

In the present work, the structure of N-(3,4-dimethylphenyl)-acetamide (34DMPA) has been determined to study the effect of substituents on the structures of N-aromatic amides (Gowda et al., 2007a, b; Gowda, Kozisek, Svoboda & Fuess, 2007; Gowda, Kožíšek, Tokarčík & Fuess, 2007). The conformation of the N—H bond in 34DMPA is syn to the 3-methyl substituent in the aromatic ring, in contrast to the anti conformation obseved with respect to the 3-chloro substituent in N-(3,4-dichlorophenyl)-acetamide (34DCPA) (Jones et al., 1990). The asymmetric unit of the structure contains 3 molecules. The bond parameters in 34DMPA are similar to those in 34DCPA (Jones et al., 1990), N-(2,6-dimethylphenyl)-acetamide (Gowda et al., 2007b), N-(3,5-dimethylphenyl)-acetamide (Gowda, Kožíšek, Tokarčík & Fuess, 2007) and other acetanilides. The molecules in 34DMPA are linked into chains through N—H···O hydrogen bonding (Table 1 & Fig. 2).

Experimental

The title compound was prepared according to the literature method (Shilpa and Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra (Shilpa and Gowda, 2007). Single crystals of the title compound were obtained from an ethanolic solution and used for X-ray diffraction studies at room temperature.

Refinement

The CH atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.96 Å. The NH atoms were located in difference map with N—H = 0.86 (3)–0.98 (3) Å. Uiso(H) values were set equal to 1.2 Ueq of the parent atom.were set equal to 1.2 Ueq of the parent atom.

Figures

Fig. 1.
Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Molecular packing of the title compound with hydrogen bonding shown as dashed lines.

Crystal data

C10H13NOZ = 6
Mr = 163.21F000 = 528
Triclinic, P1Dx = 1.147 Mg m3
Hall symbol: -P 1Cu Kα radiation λ = 1.54180 Å
a = 6.749 (1) ÅCell parameters from 25 reflections
b = 14.281 (2) Åθ = 3.1–22.1º
c = 15.005 (2) ŵ = 0.59 mm1
α = 85.33 (1)ºT = 299 (2) K
β = 79.81 (1)ºPrism, colourless
γ = 87.58 (1)º0.35 × 0.33 × 0.18 mm
V = 1418.1 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.044
Radiation source: fine-focus sealed tubeθmax = 66.9º
Monochromator: graphiteθmin = 3.0º
T = 299(2) Kh = −8→1
ω/2θ scansk = −17→17
Absorption correction: nonel = −17→17
5528 measured reflections3 standard reflections
5025 independent reflections every 120 min
3386 reflections with I > 2σ(I) intensity decay: 2.0%

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.064  w = 1/[σ2(Fo2) + (0.1316P)2 + 0.1229P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.210(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.26 e Å3
5025 reflectionsΔρmin = −0.27 e Å3
344 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (7)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6611 (4)0.21887 (13)0.27754 (16)0.0935 (7)
N10.7204 (3)0.37376 (14)0.26524 (16)0.0647 (6)
H1N0.702 (4)0.428 (2)0.2362 (19)0.078*
C10.8633 (4)0.37519 (17)0.32314 (17)0.0633 (6)
C21.0021 (4)0.44579 (19)0.3073 (2)0.0713 (7)
H21.00450.48790.25650.086*
C31.1384 (4)0.4555 (2)0.3653 (2)0.0794 (8)
C41.1409 (5)0.3917 (3)0.4390 (2)0.0906 (10)
C51.0037 (6)0.3211 (3)0.4542 (2)0.0970 (10)
H51.00530.27740.50360.116*
C60.8637 (5)0.3128 (2)0.3985 (2)0.0849 (9)
H60.77020.26540.41170.102*
C70.6247 (4)0.29887 (17)0.24731 (19)0.0658 (6)
C80.4682 (4)0.31912 (19)0.1893 (2)0.0778 (8)
H8A0.46510.38500.17080.093*
H8B0.33900.30160.22320.093*
H8C0.49950.28380.13670.093*
C91.2754 (5)0.5374 (3)0.3480 (3)0.1155 (13)
H9A1.24990.57510.29510.139*
H9B1.41300.51490.33850.139*
H9C1.25110.57470.39950.139*
C101.2889 (7)0.3980 (4)0.5030 (3)0.1352 (18)
H10A1.42320.40070.46890.162*
H10B1.27850.34370.54560.162*
H10C1.25880.45370.53530.162*
O20.6415 (3)0.89842 (12)0.17410 (15)0.0810 (6)
N20.7398 (3)1.02533 (14)0.23505 (15)0.0625 (5)
H2N0.709 (4)1.092 (2)0.2425 (18)0.075*
C110.9017 (4)0.98806 (17)0.27568 (18)0.0613 (6)
C120.9873 (4)1.04469 (19)0.32918 (18)0.0697 (7)
H120.93621.10570.33600.084*
C131.1444 (5)1.0139 (2)0.37231 (19)0.0775 (8)
C141.2212 (4)0.9219 (2)0.3629 (2)0.0810 (8)
C151.1404 (5)0.8675 (2)0.3084 (3)0.0908 (10)
H151.19270.80680.30090.109*
C160.9848 (4)0.89835 (19)0.2641 (2)0.0822 (9)
H160.93600.85940.22670.099*
C170.6230 (4)0.98221 (17)0.18788 (17)0.0617 (6)
C180.4661 (4)1.04309 (19)0.1511 (2)0.0746 (7)
H18A0.45551.10260.17740.089*
H18B0.33871.01300.16600.089*
H18C0.50311.05290.08630.089*
C191.2353 (6)1.0776 (3)0.4266 (3)0.1110 (12)
H19A1.16681.13790.42540.133*
H19B1.37521.08480.40130.133*
H19C1.22251.05130.48820.133*
C201.3884 (5)0.8838 (3)0.4104 (3)0.1128 (13)
H20A1.50450.92180.39140.135*
H20B1.42180.82030.39530.135*
H20C1.34590.88490.47480.135*
O30.6498 (3)0.55410 (11)0.16267 (14)0.0773 (6)
N30.5363 (3)0.70443 (13)0.14131 (14)0.0607 (5)
H3N0.555 (4)0.760 (2)0.1545 (18)0.073*
C210.3877 (4)0.69495 (15)0.08863 (16)0.0565 (6)
C220.2832 (4)0.77608 (17)0.06384 (16)0.0609 (6)
H220.31690.83300.08230.073*
C230.1323 (4)0.7758 (2)0.01327 (18)0.0683 (7)
C240.0808 (4)0.6904 (2)−0.0150 (2)0.0764 (8)
C250.1861 (5)0.6102 (2)0.0097 (2)0.0824 (8)
H250.15320.5533−0.00920.099*
C260.3366 (4)0.60984 (18)0.0604 (2)0.0723 (7)
H260.40320.55400.07560.087*
C270.6556 (4)0.63784 (16)0.17531 (16)0.0600 (6)
C280.7946 (5)0.67177 (19)0.2314 (2)0.0846 (9)
H28A0.92510.68080.19470.101*
H28B0.80560.62610.28100.101*
H28C0.74300.73030.25460.101*
C290.0253 (5)0.8664 (3)−0.0104 (2)0.0974 (10)
H29A−0.11480.86300.01610.117*
H29B0.03860.8766−0.07520.117*
H29C0.08360.91750.01270.117*
C30−0.0827 (5)0.6855 (3)−0.0706 (2)0.1065 (12)
H30A−0.20870.7060−0.03650.128*
H30B−0.09250.6218−0.08540.128*
H30C−0.05110.7254−0.12560.128*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1197 (17)0.0455 (10)0.1293 (18)0.0036 (10)−0.0624 (14)−0.0039 (10)
N10.0750 (14)0.0435 (10)0.0809 (14)0.0084 (9)−0.0294 (11)−0.0085 (9)
C10.0722 (16)0.0520 (13)0.0701 (15)0.0128 (11)−0.0214 (13)−0.0183 (11)
C20.0703 (16)0.0615 (15)0.0851 (18)0.0085 (12)−0.0187 (14)−0.0180 (13)
C30.0669 (17)0.0801 (19)0.095 (2)0.0081 (14)−0.0113 (15)−0.0384 (16)
C40.094 (2)0.107 (3)0.078 (2)0.0302 (19)−0.0285 (17)−0.0381 (19)
C50.128 (3)0.095 (2)0.0727 (19)0.019 (2)−0.033 (2)−0.0118 (17)
C60.112 (2)0.0733 (18)0.0740 (17)0.0072 (16)−0.0310 (17)−0.0088 (14)
C70.0712 (15)0.0480 (13)0.0822 (17)0.0085 (11)−0.0229 (13)−0.0134 (11)
C80.0755 (17)0.0617 (15)0.104 (2)0.0046 (13)−0.0362 (16)−0.0142 (14)
C90.092 (2)0.126 (3)0.133 (3)−0.020 (2)−0.015 (2)−0.041 (3)
C100.125 (3)0.190 (5)0.109 (3)0.038 (3)−0.060 (3)−0.061 (3)
O20.0835 (13)0.0536 (10)0.1117 (15)−0.0016 (9)−0.0232 (11)−0.0266 (10)
N20.0678 (12)0.0451 (10)0.0776 (13)−0.0025 (9)−0.0202 (11)−0.0051 (9)
C110.0581 (13)0.0532 (13)0.0713 (15)−0.0023 (10)−0.0100 (12)0.0011 (11)
C120.0714 (16)0.0664 (16)0.0741 (16)0.0001 (12)−0.0187 (14)−0.0102 (12)
C130.0732 (17)0.094 (2)0.0659 (16)−0.0067 (15)−0.0133 (14)−0.0036 (14)
C140.0640 (16)0.089 (2)0.0840 (19)0.0010 (15)−0.0099 (15)0.0200 (16)
C150.0762 (19)0.0631 (17)0.132 (3)0.0055 (14)−0.0238 (19)0.0067 (18)
C160.0772 (18)0.0521 (14)0.122 (2)0.0023 (12)−0.0285 (18)−0.0108 (15)
C170.0597 (14)0.0531 (13)0.0713 (15)−0.0071 (10)−0.0063 (12)−0.0077 (11)
C180.0770 (17)0.0628 (15)0.0889 (19)−0.0060 (13)−0.0286 (15)−0.0025 (13)
C190.108 (3)0.130 (3)0.107 (3)0.004 (2)−0.044 (2)−0.030 (2)
C200.088 (2)0.131 (3)0.116 (3)0.004 (2)−0.029 (2)0.033 (2)
O30.0991 (14)0.0402 (9)0.1004 (14)0.0032 (8)−0.0406 (11)−0.0032 (8)
N30.0747 (13)0.0378 (10)0.0753 (13)0.0002 (9)−0.0272 (11)−0.0072 (9)
C210.0622 (14)0.0466 (12)0.0624 (13)0.0019 (10)−0.0150 (11)−0.0074 (10)
C220.0681 (15)0.0503 (12)0.0650 (14)0.0039 (10)−0.0144 (12)−0.0051 (10)
C230.0603 (14)0.0786 (17)0.0635 (15)0.0098 (12)−0.0093 (12)−0.0006 (12)
C240.0604 (15)0.098 (2)0.0734 (17)0.0008 (14)−0.0160 (13)−0.0144 (15)
C250.085 (2)0.0730 (18)0.098 (2)−0.0096 (15)−0.0327 (17)−0.0188 (15)
C260.0814 (18)0.0517 (14)0.0914 (19)−0.0013 (12)−0.0318 (15)−0.0141 (12)
C270.0740 (15)0.0439 (12)0.0643 (14)−0.0023 (10)−0.0202 (12)0.0016 (10)
C280.111 (2)0.0558 (15)0.099 (2)0.0038 (14)−0.0545 (19)−0.0015 (14)
C290.085 (2)0.104 (2)0.100 (2)0.0300 (18)−0.0245 (18)0.0084 (19)
C300.076 (2)0.159 (4)0.093 (2)0.002 (2)−0.0321 (18)−0.026 (2)

Geometric parameters (Å, °)

O1—C71.226 (3)C15—H150.9300
N1—C71.342 (3)C16—H160.9300
N1—C11.410 (3)C17—C181.494 (4)
N1—H1N0.88 (3)C18—H18A0.9600
C1—C61.382 (4)C18—H18B0.9600
C1—C21.383 (4)C18—H18C0.9600
C2—C31.391 (4)C19—H19A0.9600
C2—H20.9300C19—H19B0.9600
C3—C41.376 (5)C19—H19C0.9600
C3—C91.500 (5)C20—H20A0.9600
C4—C51.376 (5)C20—H20B0.9600
C4—C101.514 (4)C20—H20C0.9600
C5—C61.382 (4)O3—C271.229 (3)
C5—H50.9300N3—C271.347 (3)
C6—H60.9300N3—C211.399 (3)
C7—C81.488 (4)N3—H3N0.86 (3)
C8—H8A0.9600C21—C221.390 (3)
C8—H8B0.9600C21—C261.395 (3)
C8—H8C0.9600C22—C231.374 (4)
C9—H9A0.9600C22—H220.9300
C9—H9B0.9600C23—C241.400 (4)
C9—H9C0.9600C23—C291.503 (4)
C10—H10A0.9600C24—C251.382 (4)
C10—H10B0.9600C24—C301.504 (4)
C10—H10C0.9600C25—C261.372 (4)
O2—C171.228 (3)C25—H250.9300
N2—C171.346 (3)C26—H260.9300
N2—C111.408 (3)C27—C281.486 (4)
N2—H2N0.98 (3)C28—H28A0.9600
C11—C161.388 (4)C28—H28B0.9600
C11—C121.393 (4)C28—H28C0.9600
C12—C131.376 (4)C29—H29A0.9600
C12—H120.9300C29—H29B0.9600
C13—C141.401 (5)C29—H29C0.9600
C13—C191.487 (4)C30—H30A0.9600
C14—C151.366 (5)C30—H30B0.9600
C14—C201.499 (4)C30—H30C0.9600
C15—C161.378 (4)
C7—N1—C1127.2 (2)O2—C17—N2123.6 (2)
C7—N1—H1N119.3 (19)O2—C17—C18120.6 (2)
C1—N1—H1N113.3 (19)N2—C17—C18115.8 (2)
C6—C1—C2118.2 (3)C17—C18—H18A109.5
C6—C1—N1123.0 (3)C17—C18—H18B109.5
C2—C1—N1118.6 (2)H18A—C18—H18B109.5
C1—C2—C3121.8 (3)C17—C18—H18C109.5
C1—C2—H2119.1H18A—C18—H18C109.5
C3—C2—H2119.1H18B—C18—H18C109.5
C4—C3—C2119.6 (3)C13—C19—H19A109.5
C4—C3—C9121.2 (3)C13—C19—H19B109.5
C2—C3—C9119.2 (3)H19A—C19—H19B109.5
C5—C4—C3118.5 (3)C13—C19—H19C109.5
C5—C4—C10119.9 (4)H19A—C19—H19C109.5
C3—C4—C10121.7 (4)H19B—C19—H19C109.5
C4—C5—C6122.2 (3)C14—C20—H20A109.5
C4—C5—H5118.9C14—C20—H20B109.5
C6—C5—H5118.9H20A—C20—H20B109.5
C1—C6—C5119.7 (3)C14—C20—H20C109.5
C1—C6—H6120.2H20A—C20—H20C109.5
C5—C6—H6120.2H20B—C20—H20C109.5
O1—C7—N1122.5 (2)C27—N3—C21129.3 (2)
O1—C7—C8121.8 (2)C27—N3—H3N114.5 (19)
N1—C7—C8115.7 (2)C21—N3—H3N116.2 (18)
C7—C8—H8A109.5C22—C21—C26118.2 (2)
C7—C8—H8B109.5C22—C21—N3117.3 (2)
H8A—C8—H8B109.5C26—C21—N3124.5 (2)
C7—C8—H8C109.5C23—C22—C21122.9 (2)
H8A—C8—H8C109.5C23—C22—H22118.6
H8B—C8—H8C109.5C21—C22—H22118.6
C3—C9—H9A109.5C22—C23—C24119.0 (2)
C3—C9—H9B109.5C22—C23—C29119.8 (3)
H9A—C9—H9B109.5C24—C23—C29121.2 (3)
C3—C9—H9C109.5C25—C24—C23117.7 (3)
H9A—C9—H9C109.5C25—C24—C30120.7 (3)
H9B—C9—H9C109.5C23—C24—C30121.5 (3)
C4—C10—H10A109.5C26—C25—C24123.7 (3)
C4—C10—H10B109.5C26—C25—H25118.2
H10A—C10—H10B109.5C24—C25—H25118.2
C4—C10—H10C109.5C25—C26—C21118.6 (3)
H10A—C10—H10C109.5C25—C26—H26120.7
H10B—C10—H10C109.5C21—C26—H26120.7
C17—N2—C11129.2 (2)O3—C27—N3123.1 (2)
C17—N2—H2N116.1 (16)O3—C27—C28121.4 (2)
C11—N2—H2N114.7 (16)N3—C27—C28115.5 (2)
C16—C11—C12117.6 (3)C27—C28—H28A109.5
C16—C11—N2123.8 (2)C27—C28—H28B109.5
C12—C11—N2118.5 (2)H28A—C28—H28B109.5
C13—C12—C11122.6 (3)C27—C28—H28C109.5
C13—C12—H12118.7H28A—C28—H28C109.5
C11—C12—H12118.7H28B—C28—H28C109.5
C12—C13—C14119.0 (3)C23—C29—H29A109.5
C12—C13—C19120.8 (3)C23—C29—H29B109.5
C14—C13—C19120.1 (3)H29A—C29—H29B109.5
C15—C14—C13118.1 (3)C23—C29—H29C109.5
C15—C14—C20120.5 (3)H29A—C29—H29C109.5
C13—C14—C20121.3 (3)H29B—C29—H29C109.5
C14—C15—C16123.1 (3)C24—C30—H30A109.5
C14—C15—H15118.5C24—C30—H30B109.5
C16—C15—H15118.5H30A—C30—H30B109.5
C15—C16—C11119.5 (3)C24—C30—H30C109.5
C15—C16—H16120.3H30A—C30—H30C109.5
C11—C16—H16120.3H30B—C30—H30C109.5
C7—N1—C1—C6−29.7 (4)C19—C13—C14—C203.1 (5)
C7—N1—C1—C2154.5 (3)C13—C14—C15—C16−1.3 (5)
C6—C1—C2—C3−0.6 (4)C20—C14—C15—C16179.1 (3)
N1—C1—C2—C3175.4 (2)C14—C15—C16—C11−1.2 (5)
C1—C2—C3—C42.2 (4)C12—C11—C16—C152.9 (4)
C1—C2—C3—C9−175.8 (3)N2—C11—C16—C15−178.6 (3)
C2—C3—C4—C5−1.6 (4)C11—N2—C17—O21.1 (4)
C9—C3—C4—C5176.3 (3)C11—N2—C17—C18−178.3 (2)
C2—C3—C4—C10178.8 (3)C27—N3—C21—C22178.8 (2)
C9—C3—C4—C10−3.3 (5)C27—N3—C21—C26−0.5 (4)
C3—C4—C5—C6−0.5 (5)C26—C21—C22—C230.2 (4)
C10—C4—C5—C6179.2 (3)N3—C21—C22—C23−179.1 (2)
C2—C1—C6—C5−1.4 (4)C21—C22—C23—C24−0.1 (4)
N1—C1—C6—C5−177.3 (3)C21—C22—C23—C29179.6 (3)
C4—C5—C6—C12.0 (5)C22—C23—C24—C25−0.1 (4)
C1—N1—C7—O1−4.0 (5)C29—C23—C24—C25−179.9 (3)
C1—N1—C7—C8175.1 (2)C22—C23—C24—C30−179.9 (3)
C17—N2—C11—C167.9 (4)C29—C23—C24—C300.4 (4)
C17—N2—C11—C12−173.6 (3)C23—C24—C25—C260.3 (5)
C16—C11—C12—C13−2.1 (4)C30—C24—C25—C26−179.9 (3)
N2—C11—C12—C13179.3 (2)C24—C25—C26—C21−0.3 (5)
C11—C12—C13—C14−0.4 (4)C22—C21—C26—C250.0 (4)
C11—C12—C13—C19178.2 (3)N3—C21—C26—C25179.3 (3)
C12—C13—C14—C152.1 (4)C21—N3—C27—O30.7 (4)
C19—C13—C14—C15−176.5 (3)C21—N3—C27—C28−178.2 (3)
C12—C13—C14—C20−178.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O30.88 (3)2.08 (3)2.956 (3)177 (3)
N3—H3N···O20.86 (3)2.14 (3)2.989 (3)172 (3)
N2—H2N···O1i0.98 (3)1.92 (3)2.893 (3)170 (2)

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LW2051).

References

  • Enraf–Nonius (1996). CAD-4-PC Software. Version 1.2. Enraf–Nonius, Delft, The Netherlands.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2341–o2342.
  • Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o3154.
  • Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.
  • Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2711.
  • Jones, P. G., Kirby, A. J. & Lewis, R. J. (1990). Acta Cryst. C46, 78–81.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (1987). REDU4 Version 6.2c. Stoe & Cie GmbH, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography