PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): o10.
Published online 2007 December 6. doi:  10.1107/S1600536807061521
PMCID: PMC2914972

3-Benzyl-1-butyl­imidazo[1,2-a]benzo­thieno[3,2-d]pyrimidine-2,5(1H,3H)-dione

Abstract

In the crystal structure of the title compound, C23H21N3O2S, all ring atoms of the imidazo[1,2-a]benzothieno[3,2-d]pyrimidine system are essentially coplanar and the phenyl ring is twisted with respect to it [dihedral angle = 72.60 (9)°]. The crystal packing is mainly governed by C—H(...)π hydrogen bonds and inter­molecular π–π inter­actions, with inter­planar distances of 3.54 (1) and 3.56 (1) Å, and with distances between adjacent ring centroids of 3.72 (1) and 3.80 (1) Å. The three terminal C atoms of the butyl group are disordered over two positions; the site occupancy factors are ca 0.6 and 0.4.

Related literature

Related preparation and biological activity is described by Walter (1999a [triangle],b [triangle]). For related literature, see: Ding et al. (2004 [triangle]); Janiak (2000 [triangle]). For the crystal structures of other fused pyrimidinone derivatives, see: Cao et al. (2006 [triangle]); Xu et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00o10-scheme1.jpg

Experimental

Crystal data

  • C23H21N3O2S
  • M r = 403.49
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00o10-efi1.jpg
  • a = 13.1732 (16) Å
  • b = 8.4957 (11) Å
  • c = 18.584 (2) Å
  • β = 103.345 (2)°
  • V = 2023.7 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 298 (2) K
  • 0.26 × 0.16 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.954, T max = 0.982
  • 15534 measured reflections
  • 3958 independent reflections
  • 2896 reflections with I > 2σ(I)
  • R int = 0.129

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.170
  • S = 1.00
  • 3958 reflections
  • 292 parameters
  • 22 restraints
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL (Sheldrick, 2001 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807061521/at2501sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807061521/at2501Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

supplementary crystallographic information

Comment

In the field of bioactive molecules, thienopyrimidine have received a great deal of attention (Walter, 1999a,b). Recently, There have being focused on the synthesis of the fused heterocycle systems containing thienopyrimidine via aza-Wittig reaction at room temperature(Ding et al., 2004). Herein, we present X-ray crystallographic analysis of the compound (I) in this paper, (Fig. 1), which may be used as a new precursor for obtaining bioactive molecules.

In the molecule, the bond lengths and angles are unexceptional (Cao et al., 2006; Xu et al., 2005). The four fused rings are close to coplanarity, with maximum deviations 0.060 (2)Å and -0.033 (3)Å for O3 and C11, respectively, which forms a dihedral angle of 72.60 (9)° with the adjacent C18—C23 phenyl ring.

Intermolecular C—H···π hydrogen bonds (Table 2) seem to be effective in stabilizing the crystal structure. Further stability the crystal structure is provided by offset π-π stacking interactions (Janiak, 2000) involving the thiophene (A), the imidazoe (B) and the C1—C6 benzene (C) rings. The A:C interplanar distance is 3.54 (1) Å with distances between adjacent ring centroids of 3.72 (1)Å (symmetry code relating the adjacent rings: 1 - x, 2 - y, -z). A further interaction occurs between B adjacent C rings (symmetry code: 1 - x, 1 - y, -z), with an interplanar distance of 3.56 (1)Å and a centroid-to-centroid distance of 3.80 (1)Å (Fig. 2).

Experimental

To a solution of the ethyl 3-((butylimino)methyleneamino)benzothiophene-2-carboxylate (3 mmol) in dichloromethane (5 ml) was added ethyl 2-amino-3-phenylpropanoate (3 mmol). After stirring the reaction mixture for 2 h, the solvent was removed and anhydrous ethanol (10 ml) with several drops of EtONa in EtOH was added. The mixture was stirred for 5 h at room temperature. The solution was concentrated under reduced pressure and the residue was recrystallized from ethanol to give the title compound in a yield of 86%. Crystals suitable for single-crystal X-ray diffraction were obtained by recrystallization from a mixed solvent of ethanol and dichloromethane (1:3 v/v) at room temperature.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, Uiso=1.2Ueq (C) for Csp2, C—H = 0.97 Å, Uiso = 1.2Ueq (C) for CH2, C—H = 0.96 Å, Uiso = 1.5Ueq (C) for CH3. C14, C15, C16 and attached hydrogen atoms are disordered over two sites, with refined occupancies of 0.387 (9) and 0.613 (9).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown.
Fig. 2.
The packing of the title compound.

Crystal data

C23H21N3O2SF000 = 848
Mr = 403.49Dx = 1.324 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3589 reflections
a = 13.1732 (16) Åθ = 2.3–23.5º
b = 8.4957 (11) ŵ = 0.18 mm1
c = 18.584 (2) ÅT = 298 (2) K
β = 103.345 (2)ºPrism, colourless
V = 2023.7 (4) Å30.26 × 0.16 × 0.10 mm
Z = 4

Data collection

Bruker SMART 4K CCD area0detector diffractometer3958 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.129
T = 298(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 2003)h = −16→16
Tmin = 0.954, Tmax = 0.982k = −10→10
15534 measured reflectionsl = −22→22

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.170  w = 1/[σ2(Fo2) + (0.0962P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3958 reflectionsΔρmax = 0.26 e Å3
292 parametersΔρmin = −0.32 e Å3
22 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.45304 (17)0.7981 (3)0.00701 (13)0.0455 (6)
C20.40479 (19)0.8227 (3)−0.06750 (13)0.0541 (6)
H20.43300.7798−0.10460.065*
C30.31509 (19)0.9112 (3)−0.08510 (14)0.0613 (7)
H30.28280.9287−0.13450.074*
C40.27219 (19)0.9745 (3)−0.03029 (15)0.0658 (8)
H40.21111.0332−0.04350.079*
C50.31784 (19)0.9528 (3)0.04333 (15)0.0605 (7)
H50.28830.99560.07980.073*
C60.40899 (17)0.8655 (3)0.06174 (13)0.0500 (6)
C70.54724 (16)0.7149 (3)0.03847 (12)0.0441 (5)
C80.57103 (17)0.7199 (3)0.11501 (12)0.0465 (6)
C90.66293 (18)0.6487 (3)0.15852 (12)0.0497 (6)
C100.68847 (18)0.5729 (3)0.03767 (12)0.0454 (5)
C110.8372 (2)0.4266 (3)0.06606 (15)0.0563 (6)
C120.81459 (18)0.4798 (3)0.13877 (14)0.0544 (6)
H120.79700.38700.16480.065*
C130.7543 (2)0.4725 (3)−0.06900 (13)0.0638 (7)
H13A0.68490.4359−0.09280.077*0.613 (9)
H13B0.80290.3908−0.07540.077*0.613 (9)
H13C0.68380.4415−0.09320.077*0.387 (9)
H13D0.80020.3872−0.07560.077*0.387 (9)
C140.8106 (7)0.6116 (9)−0.0933 (4)0.062 (2)0.613 (9)
H14A0.88320.6084−0.06680.074*0.613 (9)
H14B0.78070.7079−0.07930.074*0.613 (9)
C150.8060 (5)0.6175 (9)−0.1761 (3)0.087 (2)0.613 (9)
H15A0.85600.6945−0.18520.105*0.613 (9)
H15B0.82600.5156−0.19200.105*0.613 (9)
C160.7009 (7)0.6589 (14)−0.2207 (5)0.154 (4)0.613 (9)
H16A0.65200.5788−0.21500.230*0.613 (9)
H16B0.70310.6667−0.27190.230*0.613 (9)
H16C0.67970.7580−0.20420.230*0.613 (9)
C14'0.7768 (13)0.6158 (15)−0.1097 (5)0.076 (4)0.387 (9)
H14C0.84960.6457−0.09400.091*0.387 (9)
H14D0.73370.7037−0.10180.091*0.387 (9)
C15'0.7494 (10)0.5634 (13)−0.1926 (4)0.101 (4)0.387 (9)
H15C0.79200.4746−0.20020.121*0.387 (9)
H15D0.67650.5343−0.20830.121*0.387 (9)
C16'0.7727 (11)0.7057 (14)−0.2344 (5)0.117 (4)0.387 (9)
H16D0.73400.7943−0.22300.175*0.387 (9)
H16E0.75280.6849−0.28660.175*0.387 (9)
H16F0.84600.7285−0.22040.175*0.387 (9)
C170.90741 (18)0.5630 (3)0.18900 (13)0.0555 (7)
H17A0.89060.58180.23640.067*
H17B0.96670.49200.19750.067*
C180.93996 (16)0.7166 (3)0.16112 (12)0.0475 (6)
C190.99200 (17)0.7229 (3)0.10411 (13)0.0509 (6)
H191.00400.63010.08080.061*
C201.02611 (18)0.8632 (3)0.08140 (14)0.0543 (6)
H201.06040.86440.04290.065*
C211.00975 (19)1.0019 (3)0.11538 (14)0.0593 (7)
H211.03361.09660.10040.071*
C220.9581 (2)0.9992 (3)0.17149 (15)0.0643 (7)
H220.94651.09250.19450.077*
C230.92311 (19)0.8578 (3)0.19387 (13)0.0575 (7)
H230.88760.85750.23170.069*
N10.60676 (14)0.6380 (2)−0.00223 (10)0.0468 (5)
N20.75950 (15)0.4872 (2)0.01036 (11)0.0521 (5)
N30.72009 (13)0.5741 (2)0.11365 (9)0.0476 (5)
O10.69271 (13)0.6488 (2)0.22618 (9)0.0653 (5)
O20.91073 (15)0.3495 (2)0.05804 (11)0.0710 (6)
S10.48079 (5)0.82378 (9)0.15079 (3)0.0585 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0434 (12)0.0490 (14)0.0430 (12)−0.0121 (10)0.0076 (10)−0.0026 (10)
C20.0530 (14)0.0616 (16)0.0450 (13)−0.0097 (12)0.0054 (11)−0.0037 (11)
C30.0555 (15)0.0682 (18)0.0539 (14)−0.0071 (13)−0.0001 (12)0.0033 (13)
C40.0513 (15)0.0627 (18)0.0779 (19)0.0005 (13)0.0037 (14)−0.0013 (15)
C50.0517 (14)0.0638 (17)0.0666 (16)−0.0008 (12)0.0149 (12)−0.0094 (13)
C60.0454 (13)0.0577 (15)0.0463 (13)−0.0114 (11)0.0093 (11)−0.0051 (11)
C70.0422 (12)0.0504 (14)0.0396 (11)−0.0098 (10)0.0092 (10)−0.0035 (10)
C80.0448 (12)0.0572 (15)0.0391 (12)−0.0085 (11)0.0132 (10)−0.0015 (10)
C90.0477 (13)0.0636 (16)0.0390 (12)−0.0122 (11)0.0124 (10)0.0058 (11)
C100.0520 (13)0.0441 (13)0.0422 (12)−0.0078 (11)0.0150 (11)−0.0013 (10)
C110.0602 (15)0.0419 (14)0.0678 (16)−0.0027 (12)0.0170 (13)0.0062 (12)
C120.0559 (14)0.0524 (15)0.0562 (14)−0.0005 (11)0.0154 (12)0.0185 (12)
C130.0673 (16)0.0719 (19)0.0535 (15)0.0011 (14)0.0163 (13)−0.0162 (14)
C140.079 (5)0.065 (4)0.041 (3)0.019 (3)0.013 (3)0.008 (3)
C150.101 (5)0.110 (5)0.047 (3)−0.012 (4)0.010 (3)0.005 (3)
C160.141 (7)0.175 (8)0.118 (6)−0.013 (6)−0.023 (5)0.032 (5)
C14'0.096 (11)0.095 (8)0.037 (5)0.030 (6)0.014 (6)0.017 (5)
C15'0.074 (8)0.147 (12)0.077 (7)−0.010 (7)0.005 (6)−0.006 (7)
C16'0.137 (8)0.130 (8)0.089 (6)−0.019 (6)0.037 (6)0.030 (6)
C170.0504 (13)0.0694 (18)0.0454 (13)0.0088 (12)0.0080 (11)0.0162 (12)
C180.0373 (11)0.0619 (16)0.0397 (12)0.0052 (11)0.0017 (10)0.0068 (11)
C190.0527 (13)0.0534 (15)0.0484 (13)0.0044 (11)0.0151 (11)−0.0039 (11)
C200.0549 (14)0.0576 (17)0.0543 (14)0.0015 (12)0.0208 (12)0.0027 (12)
C210.0570 (14)0.0509 (15)0.0690 (17)−0.0023 (12)0.0125 (13)0.0031 (13)
C220.0655 (16)0.0589 (18)0.0679 (17)0.0055 (14)0.0138 (14)−0.0143 (14)
C230.0510 (14)0.077 (2)0.0451 (13)0.0078 (13)0.0125 (11)−0.0049 (13)
N10.0472 (11)0.0540 (12)0.0394 (10)−0.0041 (9)0.0104 (9)−0.0025 (9)
N20.0554 (11)0.0516 (12)0.0513 (11)0.0024 (9)0.0163 (10)−0.0016 (9)
N30.0447 (10)0.0579 (13)0.0406 (10)−0.0026 (9)0.0106 (9)0.0074 (9)
O10.0580 (10)0.1020 (15)0.0363 (9)−0.0023 (10)0.0116 (8)0.0123 (9)
O20.0705 (12)0.0522 (11)0.0911 (14)0.0144 (9)0.0202 (11)−0.0008 (10)
S10.0510 (4)0.0854 (6)0.0405 (4)−0.0052 (3)0.0131 (3)−0.0096 (3)

Geometric parameters (Å, °)

C1—C21.400 (3)C13—H13D0.9700
C1—C61.404 (3)C14—C151.527 (7)
C1—C71.431 (3)C14—H14A0.9700
C2—C31.375 (4)C14—H14B0.9700
C2—H20.9300C15—C161.482 (8)
C3—C41.383 (4)C15—H15A0.9700
C3—H30.9300C15—H15B0.9700
C4—C51.374 (3)C16—H16A0.9600
C4—H40.9300C16—H16B0.9600
C5—C61.385 (3)C16—H16C0.9600
C5—H50.9300C14'—C15'1.564 (9)
C6—S11.743 (2)C14'—H14C0.9700
C7—N11.373 (3)C14'—H14D0.9700
C7—C81.385 (3)C15'—C16'1.506 (9)
C8—C91.426 (3)C15'—H15C0.9700
C8—S11.732 (2)C15'—H15D0.9700
C9—O11.228 (3)C16'—H16D0.9600
C9—N31.398 (3)C16'—H16E0.9600
C10—N11.283 (3)C16'—H16F0.9600
C10—N21.372 (3)C17—C181.503 (3)
C10—N31.377 (3)C17—H17A0.9700
C11—O21.207 (3)C17—H17B0.9700
C11—N21.377 (3)C18—C231.386 (3)
C11—C121.518 (4)C18—C191.389 (3)
C12—N31.463 (3)C19—C201.374 (3)
C12—C171.529 (3)C19—H190.9300
C12—H120.9800C20—C211.377 (3)
C13—N21.466 (3)C20—H200.9300
C13—C14'1.498 (9)C21—C221.371 (4)
C13—C141.519 (7)C21—H210.9300
C13—H13A0.9700C22—C231.385 (4)
C13—H13B0.9700C22—H220.9300
C13—H13C0.9700C23—H230.9300
C2—C1—C6119.1 (2)C13—C14—H14A108.6
C2—C1—C7129.1 (2)C15—C14—H14A108.6
C6—C1—C7111.7 (2)C13—C14—H14B108.6
C3—C2—C1119.1 (2)C15—C14—H14B108.6
C3—C2—H2120.5H14A—C14—H14B107.6
C1—C2—H2120.5C16—C15—C14112.8 (6)
C2—C3—C4120.8 (2)C16—C15—H15A109.0
C2—C3—H3119.6C14—C15—H15A109.0
C4—C3—H3119.6C16—C15—H15B109.0
C5—C4—C3121.5 (2)C14—C15—H15B109.0
C5—C4—H4119.3H15A—C15—H15B107.8
C3—C4—H4119.3C15—C16—H16A109.5
C4—C5—C6118.2 (2)C15—C16—H16B109.5
C4—C5—H5120.9H16A—C16—H16B109.5
C6—C5—H5120.9C15—C16—H16C109.5
C5—C6—C1121.3 (2)H16A—C16—H16C109.5
C5—C6—S1126.4 (2)H16B—C16—H16C109.5
C1—C6—S1112.37 (18)C13—C14'—C15'103.8 (7)
N1—C7—C8123.9 (2)C13—C14'—H14C111.0
N1—C7—C1124.2 (2)C15'—C14'—H14C111.0
C8—C7—C1111.9 (2)C13—C14'—H14D111.0
C7—C8—C9122.0 (2)C15'—C14'—H14D111.0
C7—C8—S1113.44 (18)H14C—C14'—H14D109.0
C9—C8—S1124.51 (17)C16'—C15'—C14'104.6 (7)
O1—C9—N3121.5 (2)C16'—C15'—H15C110.8
O1—C9—C8127.5 (2)C14'—C15'—H15C110.8
N3—C9—C8110.96 (19)C16'—C15'—H15D110.8
N1—C10—N2124.6 (2)C14'—C15'—H15D110.8
N1—C10—N3127.2 (2)H15C—C15'—H15D108.9
N2—C10—N3108.2 (2)C18—C17—C12116.25 (18)
O2—C11—N2126.1 (3)C18—C17—H17A108.2
O2—C11—C12126.8 (2)C12—C17—H17A108.2
N2—C11—C12107.1 (2)C18—C17—H17B108.2
N3—C12—C11101.91 (19)C12—C17—H17B108.2
N3—C12—C17116.3 (2)H17A—C17—H17B107.4
C11—C12—C17112.8 (2)C23—C18—C19117.3 (2)
N3—C12—H12108.5C23—C18—C17120.9 (2)
C11—C12—H12108.5C19—C18—C17121.8 (2)
C17—C12—H12108.5C20—C19—C18121.4 (2)
N2—C13—C14'118.0 (5)C20—C19—H19119.3
N2—C13—C14108.7 (3)C18—C19—H19119.3
C14'—C13—C1418.3 (7)C19—C20—C21120.3 (2)
N2—C13—H13A107.8C19—C20—H20119.9
C14'—C13—H13A107.8C21—C20—H20119.9
C14—C13—H13A126.0C22—C21—C20119.5 (3)
N2—C13—H13B107.8C22—C21—H21120.2
C14'—C13—H13B107.8C20—C21—H21120.2
C14—C13—H13B97.9C21—C22—C23120.0 (2)
H13A—C13—H13B107.1C21—C22—H22120.0
N2—C13—H13C107.9C23—C22—H22120.0
C14'—C13—H13C105.5C18—C23—C22121.4 (2)
C14—C13—H13C123.7C18—C23—H23119.3
H13A—C13—H13C2.9C22—C23—H23119.3
H13B—C13—H13C109.7C10—N1—C7113.33 (18)
N2—C13—H13D107.8C10—N2—C11111.9 (2)
C14'—C13—H13D109.9C10—N2—C13122.7 (2)
C14—C13—H13D100.5C11—N2—C13125.4 (2)
H13A—C13—H13D104.6C10—N3—C9122.56 (19)
H13B—C13—H13D2.8C10—N3—C12110.89 (19)
H13C—C13—H13D107.2C9—N3—C12126.42 (18)
C13—C14—C15114.6 (6)C8—S1—C690.52 (11)
C6—C1—C2—C3−0.5 (3)C18—C19—C20—C210.4 (4)
C7—C1—C2—C3−178.2 (2)C19—C20—C21—C22−0.8 (4)
C1—C2—C3—C4−0.4 (4)C20—C21—C22—C230.3 (4)
C2—C3—C4—C50.6 (4)C19—C18—C23—C22−1.0 (3)
C3—C4—C5—C60.2 (4)C17—C18—C23—C22176.2 (2)
C4—C5—C6—C1−1.2 (4)C21—C22—C23—C180.6 (4)
C4—C5—C6—S1179.5 (2)N2—C10—N1—C7178.9 (2)
C2—C1—C6—C51.3 (3)N3—C10—N1—C7−0.4 (3)
C7—C1—C6—C5179.4 (2)C8—C7—N1—C10−1.2 (3)
C2—C1—C6—S1−179.29 (18)C1—C7—N1—C10179.3 (2)
C7—C1—C6—S1−1.2 (2)N1—C10—N2—C11−177.8 (2)
C2—C1—C7—N1−2.0 (4)N3—C10—N2—C111.6 (3)
C6—C1—C7—N1−179.8 (2)N1—C10—N2—C135.6 (4)
C2—C1—C7—C8178.4 (2)N3—C10—N2—C13−174.9 (2)
C6—C1—C7—C80.6 (3)O2—C11—N2—C10−178.5 (2)
N1—C7—C8—C92.1 (4)C12—C11—N2—C10−0.3 (3)
C1—C7—C8—C9−178.3 (2)O2—C11—N2—C13−2.0 (4)
N1—C7—C8—S1−179.33 (17)C12—C11—N2—C13176.1 (2)
C1—C7—C8—S10.3 (3)C14'—C13—N2—C1069.0 (8)
C7—C8—C9—O1178.4 (2)C14—C13—N2—C1086.1 (5)
S1—C8—C9—O10.0 (4)C14'—C13—N2—C11−107.1 (8)
C7—C8—C9—N3−1.4 (3)C14—C13—N2—C11−90.0 (5)
S1—C8—C9—N3−179.76 (16)N1—C10—N3—C91.0 (4)
O2—C11—C12—N3177.1 (2)N2—C10—N3—C9−178.42 (19)
N2—C11—C12—N3−1.0 (2)N1—C10—N3—C12177.1 (2)
O2—C11—C12—C1751.7 (3)N2—C10—N3—C12−2.3 (2)
N2—C11—C12—C17−126.5 (2)O1—C9—N3—C10−179.8 (2)
N2—C13—C14—C15−176.5 (5)C8—C9—N3—C100.0 (3)
C14'—C13—C14—C15−53 (2)O1—C9—N3—C124.7 (4)
C13—C14—C15—C1671.4 (10)C8—C9—N3—C12−175.5 (2)
N2—C13—C14'—C15'−172.5 (7)C11—C12—N3—C102.0 (2)
C14—C13—C14'—C15'124 (3)C17—C12—N3—C10125.1 (2)
C13—C14'—C15'—C16'−179.4 (12)C11—C12—N3—C9177.9 (2)
N3—C12—C17—C18−52.3 (3)C17—C12—N3—C9−59.0 (3)
C11—C12—C17—C1865.0 (3)C7—C8—S1—C6−0.82 (19)
C12—C17—C18—C23109.3 (3)C9—C8—S1—C6177.7 (2)
C12—C17—C18—C19−73.6 (3)C5—C6—S1—C8−179.5 (2)
C23—C18—C19—C200.5 (3)C1—C6—S1—C81.17 (18)
C17—C18—C19—C20−176.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4···Cg5i0.962.813.682 (3)156

Symmetry codes: (i) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2501).

References

  • Bruker (2001). SMART (Version 5.628) and SAINT-Plus (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cao, M.-H., Xu, S.-Z. & Hu, Y.-G. (2006). Acta Cryst. E62, o1319–o1320.
  • Ding, M. W., Xu, S. Z. & Zhao, J. F. (2004). J. Org. Chem.69, 8366–8371. [PubMed]
  • Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.
  • Sheldrick, G. M. (1997). SHELXL97 and SHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Walter, H. (1999a). Chem. Abstr 130, 237580e.
  • Walter, H. (1999b). WO Patent No. 9 911 631.
  • Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, o2789–o2790.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography