PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m93.
Published online 2007 December 6. doi:  10.1107/S1600536807063441
PMCID: PMC2914967

trans-Chlorido[6-chloro-4-(4-methoxy­benz­yl)-3-oxo-3,4-dihydro­pyrazin-2-yl]­bis­(triphenyl­phosphine)palladium(II)

Abstract

The title compound, [Pd(C12H10ClN2O2)Cl(C18H15P)2], is the inter­mediate of the reduction of a 3,5-dichloro­pyrazinone [Loosen, Tutonda, Khorasani, Compernolle & Hoornaert (1991 [triangle]). Tetra­hedron, 47, 9259–9268]. This species is formed by oxidative addition of coordinatively unsaturated Pd0 to the reactive 3-position of the heterocycle. The coordination around the Pd atom is square planar, with two trans PPh3 ligands. π–π inter­actions are observed between the centroid of the pyrazinone ring and planes of two adjacent phenyl rings, one from each PPh3 group (3.25 and 3.078 Å), stabilizing the inter­mediate structure. This could explain the reduced reactivity towards substitution of the Cl atom by the formate anion, resulting in poor yield of the reduced compound. 3-Substituted pyrazinones are important precursors in the synthesis of 5-amino­piperidinone-2-carboxyl­ate (APC) systems.

Related literature

For related literature on the reduction of 3,5-dichloro­pyrazinones, see: Loosen et al. (1991 [triangle]). For related literature on 3,5-dichloro­pyrazinones, see: Pawar & De Borggraeve (2006 [triangle]). For related literature on APC systems, see: De Borggraeve et al. (2004 [triangle]); Alen et al. (2007 [triangle]). For the Cambridge Structural Database (Version 5.28), see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m93-scheme1.jpg

Experimental

Crystal data

  • [Pd(C12H10ClN2O2)Cl(C18H15P)2]
  • M r = 916.06
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m93-efi1.jpg
  • a = 10.7544 (1) Å
  • b = 13.1526 (1) Å
  • c = 16.9967 (1) Å
  • α = 91.811 (1)°
  • β = 94.39 (1)°
  • γ = 98.451 (1)°
  • V = 2368.83 (3) Å3
  • Z = 2
  • Cu Kα radiation
  • μ = 5.13 mm−1
  • T = 100 (2) K
  • 0.5 × 0.24 × 0.24 mm

Data collection

  • Bruker SMART 6000 diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.175, T max = 0.292
  • 23121 measured reflections
  • 8422 independent reflections
  • 7879 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.073
  • S = 1.08
  • 8422 reflections
  • 515 parameters
  • 318 restraints
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]) and ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807063441/dn2294sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063441/dn2294Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Katholieke Universiteit Leuven is gratefully acknowledged for financial support. The authors thank the FWO [Fund for Scientific Research–Flanders (Belgium)] for financial support. JA and WMDB (Postdoctoral Fellows of the FWO–Flanders) thank the FWO for Fellowships received. WMDB also thanks the FWO for a ‘Krediet aan Navorsers’.

supplementary crystallographic information

Comment

The target structure 5-chloro-1-(4-methoxybenzyl)-2(1H)-pyrazinone) was synthesized as a starting product for the synthesis of dipeptide mimics (Alen et al., 2007; De Borggraeve et al., 2004). This compound can be formed by reduction of a 3,5-dichloropyrazinone with sodium formate using Pd(PPh3)4 as a catalyst. Surprisingly, the title compound (I) was isolated as an intermediate (Scheme 1, Fig. 1). This means that substitution of the chlorine atom with sodium formate and subsequent proton shift leading to the desired compound, did not occur. In similar reactions the yields are high and no traces of the intermediate substance are found. However, the presence of a hydrogen atom para to the palladium atom and a para-methoxybenzyl substituent on the N-1 nitrogen atom of the pyrazinone scaffold, seem to increase the stability of the intermediate. This stability might arise from the π–π interactions between the pyrazinone and two phenyl rings of the PPh3 groups. The centroid of the pyrazinone makes a distance of 3.25 Å and 3.078 Å with the planes formed by the two adjacent phenyl rings. Searches in the CSD database (Version 5.28) (Allen, 2002) for similar structures (59 hits in 50 crystal structures) revealed that the angle between the pyrazinone ring and an adjacent phenyl ring is on average 27.6° (range 13.0° - 65.2°). As fragment for the CSD search a Pd atom with only four substituents (2 PPh3 groups, any halogen and an aromatic ring consisting of any atom type) was used. In the represented structure the angles are 15.4° and 13.9°, resulting in almost parallel pyrazinone and adjacent phenyl rings.

Experimental

To a solution of 570 mg (2 mmol) 3,5-dichloropyrazinone in 20 ml DMF, 204 mg (3 mmol) sodium formate and 115 mg Pd(PPh3)4 are added. The solution is stirred for 4 h at 110 °C under inert atmosphere. After removal of the solvent, the residue is treated with 50 ml of water and extracted with 3x 50 ml dichloromethane. After drying over magnesium sulfate and evaporation of the solvent, the product was chromatographically purified (Heptane/EtOAc 50:50). The title compound was formed as a by-product with a yield of 45% and spontaneously crystallized from the Heptane/EtOAc mixture.

Refinement

Hydrogen atoms were positioned geometrically; Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for all other H atoms.

The asymmetric unit contains a solvent accessible void (164.3 Å3). The contribution of the disordered solvent atoms were taken into acount by the squeeze algorithm implemented in the PLATON program (Spek, 2003) for a total of 52.4 electrons.

Figures

Fig. 1.
The molecular structure of the title compound (I), showing the atom-labeling scheme with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
Fig. 2.
The title compound (I) is the stable intermediate in the synthesis of 5-chloro-1-(4-methoxybenzyl)-2(1H)-pyrazinone.

Crystal data

[Pd(C12H10ClN2O2)Cl(C18H15P)2]Z = 2
Mr = 916.06F000 = 936
Triclinic, P1Dx = 1.284 Mg m3
Hall symbol: -P 1Cu Kα radiation λ = 1.54178 Å
a = 10.7544 (1) ÅCell parameters from 6414 reflections
b = 13.1526 (1) Åθ = 2.6–70.6º
c = 16.9967 (1) ŵ = 5.13 mm1
α = 91.811 (1)ºT = 100 (2) K
β = 94.39 (1)ºBlock, transparent
γ = 98.451 (1)º0.5 × 0.24 × 0.24 mm
V = 2368.83 (3) Å3

Data collection

Bruker SMART 6000 diffractometer8422 independent reflections
Radiation source: fine-focus sealed tube7879 reflections with I > 2σ(I)
Monochromator: crossed Goebel mirrorsRint = 0.041
T = 100(2) Kθmax = 68.8º
ω and [var phi] scansθmin = 2.6º
Absorption correction: multi-scan(SADABS; Bruker, 1997)h = −12→12
Tmin = 0.175, Tmax = 0.292k = −15→15
23121 measured reflectionsl = −20→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.073  w = 1/[σ2(Fo2) + (0.0381P)2 + 0.3456P] where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
8422 reflectionsΔρmax = 0.58 e Å3
515 parametersΔρmin = −0.58 e Å3
318 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd10.882642 (11)0.283301 (9)0.798987 (7)0.00908 (6)
P20.83318 (4)0.22202 (3)0.92192 (2)0.00951 (10)
C30.84174 (17)0.08526 (14)0.92756 (11)0.0124 (3)
C40.83393 (19)0.02691 (15)0.85665 (11)0.0177 (4)
H40.83010.05940.80760.021*
C50.8318 (2)−0.07905 (15)0.85853 (12)0.0221 (4)
H50.8258−0.11890.81040.027*
C60.83855 (19)−0.12702 (15)0.93000 (13)0.0210 (4)
H60.8377−0.19930.93080.025*
C70.84646 (18)−0.06874 (15)1.00047 (12)0.0184 (4)
H70.8512−0.10131.04950.022*
C80.84748 (17)0.03648 (15)0.99934 (11)0.0152 (4)
H80.85210.07581.04760.018*
C90.93153 (18)0.28969 (14)1.00503 (11)0.0141 (4)
C100.8973 (2)0.28020 (16)1.08230 (12)0.0196 (4)
H100.82110.23791.09210.023*
C110.9737 (2)0.33190 (17)1.14494 (12)0.0255 (4)
H110.95030.32431.19740.031*
C121.0844 (2)0.39479 (16)1.13073 (13)0.0272 (5)
H121.13670.43031.17360.033*
C131.1187 (2)0.40580 (15)1.05453 (14)0.0252 (5)
H131.19430.44931.04520.030*
C141.0431 (2)0.35355 (14)0.99098 (12)0.0188 (4)
H141.06720.36130.93860.023*
C150.67328 (18)0.23049 (15)0.94789 (10)0.0139 (4)
C160.6417 (2)0.32462 (15)0.97354 (12)0.0196 (4)
H160.70610.38210.98450.023*
C170.5173 (2)0.33501 (17)0.98318 (13)0.0265 (5)
H170.49700.39931.00100.032*
C180.4222 (2)0.25182 (18)0.96699 (13)0.0264 (5)
H180.33680.25940.97250.032*
C190.4529 (2)0.15776 (17)0.94274 (13)0.0238 (4)
H190.38830.10030.93260.029*
C200.5775 (2)0.14669 (16)0.93306 (11)0.0186 (4)
H200.59750.08190.91630.022*
P210.90967 (4)0.34277 (3)0.67295 (2)0.00962 (10)
C221.06025 (17)0.42371 (13)0.66477 (11)0.0123 (3)
O220.63099 (13)0.14734 (10)0.74606 (8)0.0164 (3)
C231.11981 (18)0.47685 (15)0.73317 (11)0.0162 (4)
H231.08580.46510.78260.019*
C241.2293 (2)0.54722 (16)0.72865 (13)0.0234 (4)
H241.26870.58460.77490.028*
C251.2805 (2)0.56260 (17)0.65720 (14)0.0265 (5)
H251.35510.61050.65440.032*
C261.2236 (2)0.50845 (17)0.58949 (13)0.0242 (4)
H261.26010.51820.54060.029*
C271.1130 (2)0.43986 (15)0.59306 (11)0.0187 (4)
H271.07320.40380.54640.022*
C280.89390 (18)0.23888 (15)0.59781 (11)0.0155 (4)
C290.9105 (2)0.14114 (15)0.62008 (12)0.0191 (4)
H290.93470.12970.67360.023*
C300.8916 (2)0.05938 (17)0.56403 (14)0.0278 (5)
H300.9043−0.00740.57930.033*
C310.8544 (2)0.07548 (17)0.48620 (14)0.0293 (5)
H310.83930.01930.44850.035*
C320.8392 (2)0.17322 (19)0.46310 (13)0.0295 (5)
H320.81520.18420.40940.035*
C330.8591 (2)0.25544 (17)0.51857 (12)0.0226 (4)
H330.84910.32260.50270.027*
C340.79522 (19)0.42356 (15)0.63620 (10)0.0153 (4)
C350.8235 (2)0.53018 (15)0.64354 (11)0.0192 (4)
H350.90640.56190.66160.023*
C360.7301 (2)0.59064 (18)0.62441 (12)0.0274 (5)
H360.74940.66350.62940.033*
C370.6096 (2)0.5446 (2)0.59829 (13)0.0304 (5)
H370.54640.58600.58500.037*
C380.5802 (2)0.4381 (2)0.59132 (12)0.0274 (5)
H380.49690.40670.57380.033*
C390.67304 (19)0.37767 (17)0.61004 (11)0.0197 (4)
H390.65330.30480.60500.024*
Cl401.08823 (4)0.23058 (3)0.81045 (3)0.01784 (10)
C410.71073 (17)0.32121 (14)0.78835 (10)0.0112 (3)
N420.68875 (15)0.41388 (12)0.80409 (9)0.0134 (3)
C430.56729 (19)0.43210 (15)0.79552 (11)0.0155 (4)
Cl450.54465 (5)0.55731 (4)0.82009 (3)0.02764 (12)
C460.46835 (18)0.36031 (15)0.77103 (10)0.0156 (4)
H460.38530.37720.76550.019*
N470.49052 (15)0.26179 (12)0.75423 (9)0.0136 (3)
C480.61075 (17)0.23561 (14)0.76109 (10)0.0122 (3)
C490.38425 (18)0.18064 (15)0.72664 (11)0.0168 (4)
H49A0.30670.19550.74970.020*
H49B0.40250.11350.74560.020*
C500.36165 (18)0.17346 (14)0.63773 (12)0.0157 (4)
C510.25756 (19)0.20966 (15)0.60036 (12)0.0185 (4)
H510.20030.23840.63120.022*
C520.2369 (2)0.20408 (15)0.51874 (12)0.0222 (4)
H520.16560.22870.49390.027*
C530.3206 (2)0.16237 (14)0.47317 (12)0.0188 (4)
C540.4253 (2)0.12637 (16)0.50919 (12)0.0216 (4)
H540.48310.09860.47820.026*
C550.44411 (19)0.13164 (16)0.59098 (12)0.0203 (4)
H550.51480.10620.61570.024*
O560.29196 (16)0.15893 (12)0.39257 (9)0.0268 (3)
C570.3688 (3)0.1064 (3)0.34498 (15)0.0500 (8)
H57A0.45680.13940.35390.075*
H57B0.33990.10950.28910.075*
H57C0.36230.03440.35940.075*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.00829 (8)0.01200 (8)0.00741 (8)0.00311 (5)−0.00019 (5)0.00213 (5)
P20.0098 (2)0.0118 (2)0.0068 (2)0.00126 (16)−0.00014 (16)0.00116 (15)
C30.0102 (8)0.0130 (8)0.0138 (8)0.0015 (6)−0.0006 (7)0.0018 (6)
C40.0197 (10)0.0199 (9)0.0136 (9)0.0042 (8)−0.0006 (7)−0.0001 (7)
C50.0253 (11)0.0175 (9)0.0228 (10)0.0045 (8)−0.0016 (8)−0.0062 (8)
C60.0152 (10)0.0148 (9)0.0331 (11)0.0028 (7)0.0002 (8)0.0028 (8)
C70.0127 (9)0.0197 (9)0.0240 (10)0.0034 (7)0.0024 (7)0.0111 (8)
C80.0119 (9)0.0201 (9)0.0140 (9)0.0030 (7)0.0020 (7)0.0034 (7)
C90.0169 (9)0.0120 (8)0.0130 (8)0.0033 (7)−0.0029 (7)−0.0008 (6)
C100.0210 (10)0.0233 (10)0.0141 (9)0.0049 (8)−0.0014 (8)−0.0048 (7)
C110.0313 (12)0.0287 (11)0.0164 (9)0.0097 (9)−0.0030 (8)−0.0093 (8)
C120.0332 (12)0.0202 (10)0.0261 (11)0.0063 (9)−0.0110 (9)−0.0099 (8)
C130.0246 (11)0.0121 (9)0.0351 (12)−0.0028 (8)−0.0104 (9)0.0000 (8)
C140.0210 (10)0.0130 (9)0.0214 (9)0.0010 (7)−0.0030 (8)0.0026 (7)
C150.0134 (9)0.0203 (9)0.0085 (8)0.0034 (7)0.0021 (7)0.0026 (7)
C160.0204 (10)0.0184 (9)0.0212 (10)0.0038 (8)0.0068 (8)0.0043 (7)
C170.0295 (12)0.0243 (10)0.0305 (11)0.0142 (9)0.0121 (9)0.0066 (9)
C180.0175 (10)0.0363 (12)0.0292 (11)0.0101 (9)0.0110 (8)0.0110 (9)
C190.0159 (10)0.0311 (11)0.0235 (10)0.0000 (8)0.0033 (8)0.0020 (8)
C200.0186 (10)0.0222 (10)0.0149 (9)0.0026 (8)0.0021 (7)−0.0007 (7)
P210.0116 (2)0.0115 (2)0.0060 (2)0.00296 (16)0.00008 (15)0.00123 (15)
C220.0127 (9)0.0123 (8)0.0132 (8)0.0056 (7)0.0013 (7)0.0035 (6)
O220.0156 (7)0.0142 (6)0.0195 (7)0.0057 (5)−0.0031 (5)−0.0020 (5)
C230.0150 (9)0.0175 (9)0.0166 (9)0.0036 (7)0.0022 (7)0.0000 (7)
C240.0184 (10)0.0245 (10)0.0260 (10)0.0012 (8)−0.0012 (8)−0.0028 (8)
C250.0173 (10)0.0242 (10)0.0378 (12)−0.0003 (8)0.0061 (9)0.0037 (9)
C260.0244 (11)0.0248 (10)0.0264 (10)0.0058 (8)0.0133 (8)0.0086 (8)
C270.0238 (10)0.0193 (9)0.0147 (9)0.0074 (8)0.0046 (8)0.0021 (7)
C280.0149 (9)0.0177 (9)0.0131 (9)0.0014 (7)−0.0012 (7)−0.0030 (7)
C290.0220 (10)0.0165 (9)0.0182 (9)0.0018 (8)0.0010 (8)−0.0001 (7)
C300.0356 (13)0.0178 (10)0.0287 (11)0.0012 (9)0.0024 (9)−0.0059 (8)
C310.0334 (12)0.0241 (11)0.0271 (11)−0.0026 (9)0.0006 (9)−0.0140 (9)
C320.0353 (13)0.0362 (12)0.0164 (10)0.0093 (10)−0.0047 (9)−0.0081 (9)
C330.0300 (11)0.0242 (10)0.0139 (9)0.0084 (9)−0.0033 (8)−0.0028 (8)
C340.0176 (9)0.0231 (9)0.0071 (8)0.0078 (7)0.0019 (7)0.0044 (7)
C350.0248 (11)0.0214 (10)0.0141 (9)0.0106 (8)0.0032 (8)0.0055 (7)
C360.0380 (13)0.0315 (11)0.0195 (10)0.0230 (10)0.0087 (9)0.0100 (8)
C370.0315 (12)0.0505 (14)0.0181 (10)0.0291 (11)0.0081 (9)0.0154 (9)
C380.0177 (10)0.0545 (14)0.0128 (9)0.0131 (10)0.0009 (8)0.0125 (9)
C390.0162 (10)0.0343 (11)0.0094 (8)0.0045 (8)0.0014 (7)0.0074 (7)
Cl400.0125 (2)0.0251 (2)0.0184 (2)0.00943 (17)0.00230 (16)0.00715 (17)
C410.0136 (9)0.0156 (8)0.0045 (7)0.0024 (7)0.0010 (6)0.0010 (6)
N420.0158 (8)0.0163 (7)0.0084 (7)0.0048 (6)−0.0007 (6)−0.0007 (5)
C430.0191 (10)0.0169 (9)0.0119 (8)0.0091 (7)−0.0011 (7)−0.0025 (7)
Cl450.0266 (3)0.0223 (2)0.0346 (3)0.01454 (19)−0.0088 (2)−0.0137 (2)
C460.0155 (9)0.0230 (9)0.0102 (8)0.0104 (7)0.0004 (7)−0.0016 (7)
N470.0116 (8)0.0176 (7)0.0113 (7)0.0026 (6)−0.0003 (6)−0.0008 (6)
C480.0134 (9)0.0166 (9)0.0069 (8)0.0038 (7)−0.0010 (6)0.0015 (6)
C490.0108 (9)0.0197 (9)0.0190 (9)0.0002 (7)0.0004 (7)0.0008 (7)
C500.0133 (9)0.0126 (8)0.0200 (9)−0.0002 (7)−0.0013 (7)0.0011 (7)
C510.0166 (10)0.0176 (9)0.0213 (10)0.0046 (7)−0.0013 (8)−0.0006 (7)
C520.0257 (11)0.0180 (9)0.0230 (10)0.0090 (8)−0.0087 (8)0.0016 (8)
C530.0254 (10)0.0131 (8)0.0163 (9)0.0009 (7)−0.0040 (8)−0.0005 (7)
C540.0220 (10)0.0233 (10)0.0196 (10)0.0055 (8)0.0003 (8)−0.0052 (8)
C550.0172 (10)0.0227 (10)0.0211 (10)0.0080 (8)−0.0056 (8)−0.0018 (8)
O560.0393 (9)0.0273 (8)0.0151 (7)0.0131 (7)−0.0047 (6)−0.0004 (6)
C570.0578 (19)0.084 (2)0.0150 (11)0.0361 (17)−0.0002 (11)−0.0048 (12)

Geometric parameters (Å, °)

Pd1—C411.9812 (19)C26—C271.389 (3)
Pd1—P212.3280 (4)C26—H260.9500
Pd1—P22.3343 (4)C27—H270.9500
Pd1—Cl402.4084 (4)C28—C291.384 (3)
P2—C31.8198 (18)C28—C331.402 (3)
P2—C91.8225 (18)C29—C301.395 (3)
P2—C151.8259 (19)C29—H290.9500
C3—C41.398 (3)C30—C311.384 (3)
C3—C81.398 (3)C30—H300.9500
C4—C51.392 (3)C31—C321.385 (4)
C4—H40.9500C31—H310.9500
C5—C61.388 (3)C32—C331.393 (3)
C5—H50.9500C32—H320.9500
C6—C71.392 (3)C33—H330.9500
C6—H60.9500C34—C351.390 (3)
C7—C81.383 (3)C34—C391.396 (3)
C7—H70.9500C35—C361.396 (3)
C8—H80.9500C35—H350.9500
C9—C101.395 (3)C36—C371.381 (4)
C9—C141.401 (3)C36—H360.9500
C10—C111.388 (3)C37—C381.390 (4)
C10—H100.9500C37—H370.9500
C11—C121.388 (4)C38—C391.390 (3)
C11—H110.9500C38—H380.9500
C12—C131.380 (4)C39—H390.9500
C12—H120.9500C41—N421.299 (2)
C13—C141.398 (3)C41—C481.474 (3)
C13—H130.9500N42—C431.360 (3)
C14—H140.9500C43—C461.345 (3)
C15—C201.396 (3)C43—Cl451.7423 (19)
C15—C161.396 (3)C46—N471.377 (2)
C16—C171.387 (3)C46—H460.9500
C16—H160.9500N47—C481.384 (2)
C17—C181.388 (3)N47—C491.481 (2)
C17—H170.9500C49—C501.510 (3)
C18—C191.385 (3)C49—H49A0.9900
C18—H180.9500C49—H49B0.9900
C19—C201.391 (3)C50—C551.394 (3)
C19—H190.9500C50—C511.397 (3)
C20—H200.9500C51—C521.386 (3)
P21—C221.8199 (19)C51—H510.9500
P21—C281.8208 (19)C52—C531.392 (3)
P21—C341.8283 (19)C52—H520.9500
C22—C271.393 (3)C53—O561.379 (2)
C22—C231.398 (3)C53—C541.391 (3)
O22—C481.235 (2)C54—C551.387 (3)
C23—C241.395 (3)C54—H540.9500
C23—H230.9500C55—H550.9500
C24—C251.380 (3)O56—C571.432 (3)
C24—H240.9500C57—H57A0.9800
C25—C261.385 (3)C57—H57B0.9800
C25—H250.9500C57—H57C0.9800
C41—Pd1—P2187.89 (5)C26—C27—C22120.32 (18)
C41—Pd1—P286.59 (5)C26—C27—H27119.8
P21—Pd1—P2174.088 (16)C22—C27—H27119.8
C41—Pd1—Cl40177.83 (5)C29—C28—C33119.68 (18)
P21—Pd1—Cl4092.403 (15)C29—C28—P21119.31 (15)
P2—Pd1—Cl4093.033 (15)C33—C28—P21120.94 (15)
C3—P2—C9108.29 (8)C28—C29—C30120.10 (19)
C3—P2—C15102.83 (9)C28—C29—H29119.9
C9—P2—C15103.12 (9)C30—C29—H29119.9
C3—P2—Pd1111.86 (6)C31—C30—C29120.1 (2)
C9—P2—Pd1114.02 (6)C31—C30—H30120.0
C15—P2—Pd1115.72 (6)C29—C30—H30120.0
C4—C3—C8119.60 (17)C32—C31—C30120.24 (19)
C4—C3—P2117.83 (14)C32—C31—H31119.9
C8—C3—P2122.43 (14)C30—C31—H31119.9
C5—C4—C3119.52 (18)C31—C32—C33120.0 (2)
C5—C4—H4120.2C31—C32—H32120.0
C3—C4—H4120.2C33—C32—H32120.0
C6—C5—C4120.65 (19)C32—C33—C28119.9 (2)
C6—C5—H5119.7C32—C33—H33120.1
C4—C5—H5119.7C28—C33—H33120.1
C5—C6—C7119.69 (18)C35—C34—C39119.60 (18)
C5—C6—H6120.2C35—C34—P21120.60 (15)
C7—C6—H6120.2C39—C34—P21119.27 (15)
C8—C7—C6120.18 (18)C34—C35—C36120.0 (2)
C8—C7—H7119.9C34—C35—H35120.0
C6—C7—H7119.9C36—C35—H35120.0
C7—C8—C3120.35 (18)C37—C36—C35120.0 (2)
C7—C8—H8119.8C37—C36—H36120.0
C3—C8—H8119.8C35—C36—H36120.0
C10—C9—C14119.27 (17)C36—C37—C38120.4 (2)
C10—C9—P2121.40 (15)C36—C37—H37119.8
C14—C9—P2119.33 (15)C38—C37—H37119.8
C11—C10—C9120.6 (2)C37—C38—C39119.7 (2)
C11—C10—H10119.7C37—C38—H38120.2
C9—C10—H10119.7C39—C38—H38120.2
C12—C11—C10119.9 (2)C38—C39—C34120.3 (2)
C12—C11—H11120.1C38—C39—H39119.9
C10—C11—H11120.1C34—C39—H39119.9
C13—C12—C11120.12 (19)N42—C41—C48123.17 (17)
C13—C12—H12119.9N42—C41—Pd1122.49 (13)
C11—C12—H12119.9C48—C41—Pd1114.33 (13)
C12—C13—C14120.6 (2)C41—N42—C43118.09 (16)
C12—C13—H13119.7C46—C43—N42124.11 (17)
C14—C13—H13119.7C46—C43—Cl45120.40 (15)
C13—C14—C9119.5 (2)N42—C43—Cl45115.49 (14)
C13—C14—H14120.2C43—C46—N47118.31 (17)
C9—C14—H14120.2C43—C46—H46120.8
C20—C15—C16118.82 (18)N47—C46—H46120.8
C20—C15—P2120.50 (15)C46—N47—C48121.92 (16)
C16—C15—P2120.19 (15)C46—N47—C49119.99 (16)
C17—C16—C15120.59 (19)C48—N47—C49118.08 (15)
C17—C16—H16119.7O22—C48—N47122.10 (17)
C15—C16—H16119.7O22—C48—C41123.50 (17)
C16—C17—C18120.3 (2)N47—C48—C41114.40 (16)
C16—C17—H17119.9N47—C49—C50112.06 (15)
C18—C17—H17119.9N47—C49—H49A109.2
C19—C18—C17119.5 (2)C50—C49—H49A109.2
C19—C18—H18120.3N47—C49—H49B109.2
C17—C18—H18120.3C50—C49—H49B109.2
C18—C19—C20120.6 (2)H49A—C49—H49B107.9
C18—C19—H19119.7C55—C50—C51118.42 (18)
C20—C19—H19119.7C55—C50—C49121.16 (18)
C19—C20—C15120.24 (19)C51—C50—C49120.43 (18)
C19—C20—H20119.9C52—C51—C50120.69 (19)
C15—C20—H20119.9C52—C51—H51119.7
C22—P21—C28107.68 (9)C50—C51—H51119.7
C22—P21—C34102.95 (9)C51—C52—C53119.96 (19)
C28—P21—C34103.53 (9)C51—C52—H52120.0
C22—P21—Pd1113.86 (6)C53—C52—H52120.0
C28—P21—Pd1112.69 (6)O56—C53—C54123.74 (19)
C34—P21—Pd1115.12 (6)O56—C53—C52115.97 (18)
C27—C22—C23119.38 (18)C54—C53—C52120.28 (18)
C27—C22—P21122.84 (14)C55—C54—C53119.10 (19)
C23—C22—P21117.63 (14)C55—C54—H54120.5
C24—C23—C22119.85 (18)C53—C54—H54120.5
C24—C23—H23120.1C54—C55—C50121.55 (19)
C22—C23—H23120.1C54—C55—H55119.2
C25—C24—C23120.17 (19)C50—C55—H55119.2
C25—C24—H24119.9C53—O56—C57116.97 (18)
C23—C24—H24119.9O56—C57—H57A109.5
C24—C25—C26120.3 (2)O56—C57—H57B109.5
C24—C25—H25119.9H57A—C57—H57B109.5
C26—C25—H25119.9O56—C57—H57C109.5
C25—C26—C27120.0 (2)H57A—C57—H57C109.5
C25—C26—H26120.0H57B—C57—H57C109.5
C27—C26—H26120.0

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2294).

References

  • Alen, J., Smets, W. J., Dobrzańska, L., De Borggraeve, W. M., Compernolle, F. & Hoornaert, G. J. (2007). Eur. J. Org. Chem.6, 965–971.
  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Bruker (1997). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • De Borggraeve, W. M., Verbist, B. M. P., Rombouts, F. J. R., Pawar, V. G., Smets, W. J., Kamoune, L., Alen, J., Van der Eycken, E. V., Compernolle, F. & Hoornaert, G. J. (2004). Tetrahedron, 60, 11597–11612.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Loosen, P. K., Tutonda, M. G., Khorasani, M. F., Compernolle, F. & Hoornaert, G. J. (1991). Tetrahedron, 47, 9259–9268.
  • Pawar, V. G. & De Borggraeve, W. M. (2006). Synthesis, 17, 2799–2814.
  • Sheldrick, G. M. (1997). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography