PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m91.
Published online 2007 December 6. doi:  10.1107/S1600536807063738
PMCID: PMC2914965

catena-Poly[[aqua­dipyridine­copper(II)]-μ-fumarato]

Abstract

The title compound, [Cu(C4H2O4)(C5H5N)2(H2O)]n, is a one-dimensional coordination polymer based on pyridine and fumarate ligands. Each CuII cation is coordinated by two carboxyl­ate O atoms belonging to two fumarate anions, two N atoms from two pyridine mol­ecules and one water mol­ecule, in a square-based pyramidal geometry. Each fumarate anion bridges two CuII cations through the two carboxyl­ate groups in a bis-monodentate fashion to form a one-dimensional polymeric chain along the c axis. Neighbouring chains are linked together to form a two-dimensional network parallel to the ac plane via hydrogen bonding inter­actions between uncoordinated carboxyl­ate O atoms and coordinated water mol­ecules of adjecent chains.

Related literature

For related literature, see: Barthelet et al. (2002 [triangle]); Che et al. (2006 [triangle]); Dalai et al. (2002 [triangle]); Rao et al. (2004 [triangle]); Yaghi et al. (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m91-scheme1.jpg

Experimental

Crystal data

  • [Cu(C4H2O4)(C5H5N)2(H2O)]
  • M r = 353.81
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m91-efi3.jpg
  • a = 5.6238 (6) Å
  • b = 15.3174 (16) Å
  • c = 17.4404 (16) Å
  • V = 1502.4 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 273 (2) K
  • 0.32 × 0.32 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.648, T max = 0.732
  • 9106 measured reflections
  • 3330 independent reflections
  • 2520 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.116
  • S = 1.02
  • 3330 reflections
  • 199 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.33 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1347 Friedel pairs
  • Flack parameter: 0.50 (2)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807063738/ci2529sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807063738/ci2529Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 20772014).

supplementary crystallographic information

Comment

Recently, the design and construction of coordination polymers have attracted great attention due to their rich network topologies and potential applications (Yaghi et al., 1998). Organic O– and N-donors are often chosen to fabricate these complexes. A number of metal-organic frameworks with extended structures and novel adsorption and magnetic properties have been synthesized based on aromatic dicarboxylate ligands (Barthelet et al., 2002; Rao et al., 2004). Compared with benzenedicarboxylic acid, the alkenedicarboxylic acid is also regarded as an excellent candidate for the self-assembly of coordination polymers. Fumaric acid ligand is the typical example of alkenedicarboxylic acid ligand. As far as we know, several coordination polymers based on fumaric acid have been obtained (Che et al., 2006; Dalai et al., 2002). We report here the crystal structure of the title coordination polymer, [Cu(C4H2O4)(C5NH5)2(H2O)]n.

The asymmetric unit of the title compound consists of one CuII cation, one fumarate dianion, two pyridine ligands and one water molecule (Fig. 1). The CuII cation has a square-based pyramidal geometry formed by two carboxylate O atoms from two fumarate ligands, two N atoms from two pyridine molecules and one water molecule. The four basal coordination sites are filled by the atoms O1, N1, N2 and O4i, while the axial position is occupied by the atom O5. The Cu—O distances are in the range 1.925 (2)–2.210 (3) Å and the Cu—N distances are 2.030 (4) and 2.031 (3) Å. These values are in good agreement with those found in other extended structures (Dalai et al., 2002). The angles subtended at the metal centre are listed in Table 1. Each fumarate dianion acts as a µ2-bridging ligand to connect two CuII centers to form a chain structure along the c axis, with a Cu···Cu distance of 8.743 (4) Å. The chains are further packed into a two-dimensional network parallel to the ac plane through O—H···O hydrogen bonding interactions between the water molecule and uncoordinated carboxylate O atoms of fumarate ligands of adjacent chains (Fig. 2). Each pyridine, as a terminal ligand, occupies two coordination positions of CuII cation and decorates alternately at two sides of chains (Fig. 3).

Experimental

A solid mixture of Cu(NO3)2.6H2O (0.120 g, 0.5 mmol) and fumaric acid (0.06 g, 0.5 mmol) was dissolved in a 25 ml vial containing DMF (10 ml). The solution was stirred in air for 50 min and the vial was placed in a 80 ml beaker containing pyridine (3 ml) and DMF (5 ml). The reaction mixture was sealed by parafilm and kept at 333 K. Block-shaped blue crystals of the title compound were obtained after 5 d.

Refinement

C-bound H atoms were placed in calculated positions (C—H = 0.93 Å) and refined in the riding-model approximation with Uiso(H) = 1.2Ueq(C). O-bound H atoms were located in a difference map and refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(O). Flack parameter refined to 0.50 (2) indicating that the crystal used was a racemic twin (Flack, 1983).

Figures

Fig. 1.
View of a fragment of polymeric title compound, showing the coordination environment of the metal center and atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [symmetry code: (A) -x + 1/2, -y + 2, z + 1/2].
Fig. 2.
View of a hydrogen-bonded (dashed lines) two-dimensional network in the title compound.
Fig. 3.
The crystal packing of the title compound, viewed down the a axis.

Crystal data

[Cu(C4H2O4)(C5H5N)2(H2O)]F000 = 724
Mr = 353.81Dx = 1.564 Mg m3
Orthorhombic, P212121Mo Kα radiation λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2169 reflections
a = 5.6238 (6) Åθ = 2.3–27.5º
b = 15.3174 (16) ŵ = 1.48 mm1
c = 17.4404 (16) ÅT = 273 (2) K
V = 1502.4 (3) Å3Block, blue
Z = 40.32 × 0.32 × 0.22 mm

Data collection

Bruker SMART CCD area-detector diffractometer3330 independent reflections
Radiation source: fine-focus sealed tube2520 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.034
Detector resolution: Bruker SMART CCD area-detector pixels mm-1θmax = 27.5º
T = 273(2) Kθmin = 2.3º
[var phi] and ω scansh = −7→7
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)k = −18→19
Tmin = 0.648, Tmax = 0.732l = −22→22
9106 measured reflections

Refinement

Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.046  w = 1/[σ2(Fo2) + (0.0579P)2 + 0.6209P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.70 e Å3
3330 reflectionsΔρmin = −0.32 e Å3
199 parametersExtinction correction: none
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1347 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: 0.50 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.25711 (11)0.97944 (3)0.87637 (2)0.03127 (15)
O10.2678 (6)0.9836 (2)0.76609 (13)0.0420 (7)
O2−0.1160 (6)0.9684 (3)0.74117 (16)0.0595 (10)
O30.6212 (6)0.9782 (3)0.50624 (16)0.0573 (9)
O40.2510 (6)1.02406 (18)0.48704 (12)0.0404 (6)
O50.6495 (5)0.9721 (2)0.87740 (15)0.0526 (8)
H5B0.72180.97920.83130.063*
H5A0.75220.99280.91090.063*
N10.2274 (7)0.8475 (2)0.87281 (18)0.0414 (8)
N20.2434 (7)1.1119 (2)0.87979 (17)0.0411 (7)
C10.0911 (8)0.9761 (3)0.7220 (2)0.0338 (9)
C20.1466 (8)0.9824 (3)0.6380 (2)0.0356 (10)
H20.02210.98200.60300.043*
C30.3656 (9)0.9883 (3)0.6126 (2)0.0345 (10)
H30.49030.98720.64760.041*
C40.4217 (9)0.9968 (2)0.5281 (2)0.0320 (11)
C50.0718 (10)0.8032 (4)0.9141 (3)0.0586 (14)
H5−0.03770.83370.94380.070*
C60.0664 (13)0.7118 (4)0.9146 (4)0.083 (2)
H6−0.04540.68220.94400.100*
C70.2251 (13)0.6674 (4)0.8719 (4)0.087 (2)
H70.22490.60670.87160.105*
C80.3846 (13)0.7123 (4)0.8294 (4)0.086 (2)
H80.49580.68270.79980.103*
C90.3818 (11)0.8019 (4)0.8303 (3)0.0606 (14)
H90.49110.83200.80030.073*
C100.0860 (10)1.1570 (3)0.8377 (3)0.0581 (15)
H10−0.02641.12690.80880.070*
C110.0874 (12)1.2476 (4)0.8363 (4)0.080 (2)
H11−0.02341.27760.80670.095*
C120.2507 (12)1.2924 (3)0.8781 (3)0.0804 (17)
H120.25441.35300.87710.096*
C130.4077 (11)1.2468 (4)0.9211 (4)0.0752 (19)
H130.52011.27610.95050.090*
C140.4004 (9)1.1567 (3)0.9211 (3)0.0538 (13)
H140.50911.12620.95110.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0335 (2)0.0455 (3)0.01487 (19)0.0008 (4)−0.0003 (2)−0.0007 (2)
O10.0401 (18)0.0715 (17)0.0145 (11)−0.003 (2)−0.0026 (13)0.0035 (12)
O20.039 (2)0.115 (3)0.0241 (14)−0.006 (2)0.0066 (13)−0.0059 (19)
O30.0350 (19)0.108 (3)0.0286 (15)0.009 (2)0.0072 (13)0.0122 (18)
O40.0478 (18)0.0552 (15)0.0180 (11)0.010 (3)0.0002 (15)0.0010 (12)
O50.0291 (14)0.101 (3)0.0279 (15)−0.0031 (16)−0.0005 (12)−0.013 (2)
N10.046 (2)0.0493 (19)0.0295 (16)0.001 (2)−0.002 (2)−0.0013 (15)
N20.0424 (18)0.0470 (19)0.0340 (16)−0.007 (2)−0.001 (3)0.0016 (15)
C10.034 (2)0.047 (2)0.0204 (17)0.001 (2)0.0036 (15)−0.005 (2)
C20.033 (2)0.050 (2)0.023 (2)0.004 (2)−0.0031 (16)−0.003 (2)
C30.041 (2)0.042 (3)0.020 (2)−0.0003 (19)−0.0036 (16)0.0008 (17)
C40.033 (3)0.041 (3)0.0226 (19)−0.0061 (16)−0.0010 (16)0.0006 (15)
C50.060 (4)0.053 (3)0.063 (3)−0.001 (3)0.000 (3)0.000 (3)
C60.078 (5)0.065 (4)0.107 (5)−0.016 (4)−0.013 (4)0.020 (4)
C70.067 (4)0.047 (3)0.147 (7)0.005 (3)−0.043 (6)−0.008 (4)
C80.072 (5)0.063 (4)0.122 (6)0.015 (4)−0.014 (4)−0.037 (4)
C90.058 (4)0.056 (3)0.068 (4)0.003 (3)−0.002 (3)−0.015 (3)
C100.070 (4)0.045 (3)0.059 (3)−0.001 (3)−0.018 (3)0.005 (2)
C110.085 (5)0.052 (4)0.102 (5)0.010 (3)−0.031 (4)0.007 (3)
C120.082 (4)0.046 (3)0.114 (5)−0.008 (4)−0.008 (6)0.001 (3)
C130.070 (4)0.050 (3)0.106 (5)−0.010 (3)−0.027 (4)−0.015 (3)
C140.045 (3)0.057 (3)0.059 (3)−0.006 (2)−0.014 (2)−0.002 (3)

Geometric parameters (Å, °)

Cu1—O11.925 (2)C3—H30.93
Cu1—O4i1.931 (2)C5—C61.400 (8)
Cu1—N22.031 (3)C5—H50.93
Cu1—N12.030 (4)C6—C71.347 (9)
Cu1—O52.210 (3)C6—H60.93
O1—C11.262 (5)C7—C81.351 (9)
O2—C11.218 (5)C7—H70.93
O3—C41.219 (5)C8—C91.372 (8)
O4—C41.268 (5)C8—H80.93
O4—Cu1ii1.931 (2)C9—H90.93
O5—H5B0.91C10—C111.388 (8)
O5—H5A0.88C10—H100.93
N1—C51.321 (6)C11—C121.358 (8)
N1—C91.338 (6)C11—H110.93
N2—C141.330 (6)C12—C131.352 (8)
N2—C101.342 (6)C12—H120.93
C1—C21.501 (5)C13—C141.381 (7)
C2—C31.312 (6)C13—H130.93
C2—H20.93C14—H140.93
C3—C41.513 (5)
O1—Cu1—O4i179.45 (15)O4—C4—C3114.9 (4)
O1—Cu1—N289.83 (13)N1—C5—C6122.1 (6)
O4i—Cu1—N289.86 (12)N1—C5—H5119.0
O1—Cu1—N190.30 (13)C6—C5—H5119.0
O4i—Cu1—N190.06 (12)C7—C6—C5119.2 (7)
N2—Cu1—N1173.11 (17)C7—C6—H6120.4
O1—Cu1—O588.78 (12)C5—C6—H6120.4
O4i—Cu1—O590.80 (12)C6—C7—C8119.0 (6)
N2—Cu1—O595.07 (15)C6—C7—H7120.5
N1—Cu1—O591.82 (15)C8—C7—H7120.5
C1—O1—Cu1125.5 (3)C7—C8—C9119.7 (7)
C4—O4—Cu1ii124.9 (3)C7—C8—H8120.1
Cu1—O5—H5B115.7C9—C8—H8120.1
Cu1—O5—H5A130.0N1—C9—C8122.4 (6)
H5B—O5—H5A104.5N1—C9—H9118.8
C5—N1—C9117.6 (5)C8—C9—H9118.8
C5—N1—Cu1123.3 (3)N2—C10—C11121.4 (5)
C9—N1—Cu1118.9 (4)N2—C10—H10119.3
C14—N2—C10117.9 (4)C11—C10—H10119.3
C14—N2—Cu1120.4 (3)C12—C11—C10120.0 (6)
C10—N2—Cu1121.6 (3)C12—C11—H11120.0
O2—C1—O1126.5 (4)C10—C11—H11120.0
O2—C1—C2118.2 (4)C13—C12—C11118.6 (6)
O1—C1—C2115.2 (4)C13—C12—H12120.7
C3—C2—C1122.0 (4)C11—C12—H12120.7
C3—C2—H2119.0C12—C13—C14119.8 (5)
C1—C2—H2119.0C12—C13—H13120.1
C2—C3—C4122.1 (4)C14—C13—H13120.1
C2—C3—H3119.0N2—C14—C13122.4 (5)
C4—C3—H3119.0N2—C14—H14118.8
O3—C4—O4126.7 (4)C13—C14—H14118.8
O3—C4—C3118.4 (4)

Symmetry codes: (i) −x+1/2, −y+2, z+1/2; (ii) −x+1/2, −y+2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5B···O2iii0.911.822.718 (4)167
O5—H5A···O3iv0.881.862.700 (4)158

Symmetry codes: (iii) x+1, y, z; (iv) −x+3/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2529).

References

  • Barthelet, K., Marrot, J., Riou, D. & Ferey, G. (2002). Angew. Chem. Int. Ed.41, 281–284. [PubMed]
  • Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Che, G.-B., Liu, C.-B. & Xu, Z.-L. (2006). Acta Cryst. E62, m1948–m1949.
  • Dalai, S., Mukherjee, P. S., Rogez, G., Mallah, T., Drew, M. G. B. & Chaudhuri, N. R. (2002). Eur. J. Inorg. Chem. pp. 3292–3297.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1490–1521.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography