PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m86.
Published online 2007 December 6. doi:  10.1107/S160053680706388X
PMCID: PMC2914962

Bis[6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]manganese(II) trihydrate

Abstract

In the title complex, [Mn(C11H10N3O2)2]·3H2O, the MnII atom is coordinated by four N atoms and two O atoms in a distorted octa­hedral geometry. The mol­ecules are linked together via hydrogen bonds involving the water molecules. One of these is disordered equally over two positions.

Related literature

For related literature, see: Zhao et al. (2007 [triangle]); Yin et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m86-scheme1.jpg

Experimental

Crystal data

  • [Mn(C11H10N3O2)2]·3H2O
  • M r = 541.43
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m86-efi1.jpg
  • a = 9.7950 (10) Å
  • b = 10.9030 (12) Å
  • c = 12.8070 (15) Å
  • α = 70.162 (2)°
  • β = 74.825 (2)°
  • γ = 83.760 (3)°
  • V = 1241.4 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.59 mm−1
  • T = 293 (2) K
  • 0.53 × 0.49 × 0.47 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.747, T max = 0.770
  • 6455 measured reflections
  • 4308 independent reflections
  • 3050 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.150
  • S = 1.07
  • 4308 reflections
  • 338 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706388X/sg2211sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706388X/sg2211Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (20761002) for support. This research was sponsored by the Fund of the Talent Highland Research Program of Guangxi University (205121), the Science Foundation of the State Ethnic Affairs Commission (07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (0409032, 0409012,0509ZD047).

supplementary crystallographic information

Comment

Recently we reported the crystal structures of bis(6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato)zinc(II) trihydrate (Yin et al., 2007) and bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinato]cobalt(II) 2.5- hydrate (Zhao et al., 2007). As a continuation of these investigations, we report in this paper the crystal structure of Bis(6-(3,5-dimethyl-1H-pyrazol-1-yl) picolinato)manganese(II)trihydrate.

The structure consists of the manganese(II) complex and three uncoordinated water molecules. The Mn atom is six-coordinated by four N atoms and two O atoms derived from the tridentate ligands, 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinate (DPP), that define a distorted octahedral environment; the Mn—O bond lengths are 2.143 (3) and 2.154 (3) Å, The Mn—N distances range from 2.199 (3) to 2.277 (3) Å, i.e. normal values, The C1—C2 bond length is 1.522 (5) Å, being in the normal C—C ranges in manganese carboxylate complexes.

In the crystal structure, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving the solvate water molecules; three water molecules and two DDP O atoms via intermolecular H—O···H hydrogen bonds. A great number of hydrogen contacts link the complex into a three-dimensional network. (Fig. 2; for symmetry codes see Table 1).

Experimental

6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid, and MnCl2. 6H2O were available commercially and were used without further purification. Equimolar 6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (1 mmol, 217 mg) was dissolved in anhydrous ethyl alcohol (AR,99.9%) (15 ml). The mixture was stirred to give a clear solution, To this solution was added MnCl2.6H2O (0.5 mmol, 119 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, yellow blocks of the title compound were formed. The crystals were isolated, washed with alcohol three times(Yield75%). Elemental analysis: found: C, 48.65; H, 5.01; O, 20.87; calc. for C22H26MnN6O7: C, 48.80; H, 4.84; O, 20.69.

Refinement

H atoms on C atoms were positoned geometrically and refined using a riding model with C—H = 0.96Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference Fourier maps and the O—H distances were constrained 0.85 Å, with Uiso(H) = 1.2Ueq(O).

Figures

Fig. 1.
The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.

Crystal data

[Mn(C11H10N3O2)2]·3(H2O1)Z = 2
Mr = 541.43F000 = 562
Triclinic, P1Dx = 1.448 Mg m3
a = 9.7950 (10) ÅMo Kα radiation λ = 0.71073 Å
b = 10.9030 (12) ÅCell parameters from 2622 reflections
c = 12.8070 (15) Åθ = 2.2–24.3º
α = 70.162 (2)ºµ = 0.59 mm1
β = 74.825 (2)ºT = 293 (2) K
γ = 83.760 (3)ºBlock, yellow
V = 1241.4 (2) Å30.53 × 0.49 × 0.47 mm

Data collection

Bruker SMART CCD area-detector diffractometer4308 independent reflections
Radiation source: fine-focus sealed tube3050 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.024
T = 293(2) Kθmax = 25.0º
phi and ω scansθmin = 1.7º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −11→11
Tmin = 0.747, Tmax = 0.770k = −12→12
6455 measured reflectionsl = −15→8

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.150  w = 1/[σ2(Fo2) + (0.0777P)2 + 0.3474P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4308 reflectionsΔρmax = 0.57 e Å3
338 parametersΔρmin = −0.25 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Mn10.71418 (5)0.77632 (5)0.27494 (5)0.0466 (2)
N10.8241 (3)0.9608 (2)0.2282 (2)0.0393 (6)
N20.7833 (3)1.0148 (3)0.0499 (2)0.0446 (7)
N30.7221 (3)0.8947 (3)0.0899 (3)0.0497 (7)
N40.6120 (3)0.5904 (2)0.3154 (2)0.0392 (6)
N50.3986 (3)0.6848 (3)0.3745 (2)0.0420 (7)
N60.4768 (3)0.7939 (3)0.3460 (2)0.0444 (7)
O10.7731 (3)0.7770 (3)0.4245 (2)0.0640 (8)
O20.8860 (3)0.8766 (3)0.5015 (2)0.0624 (7)
O30.8791 (3)0.6429 (3)0.2293 (3)0.0763 (9)
O40.9341 (3)0.4450 (3)0.2160 (3)0.0884 (10)
O50.1776 (4)0.3403 (4)0.2963 (3)0.1229 (15)
H5A0.15590.27550.35710.147*
H5B0.10270.37020.27380.147*
O60.4031 (5)0.4792 (5)0.1413 (4)0.1482 (18)
H6A0.33080.43740.18660.178*
H6B0.38200.52370.07870.178*
O70.6528 (7)0.3620 (7)0.0713 (5)0.091 (2)0.50
H7D0.57870.40470.09170.109*0.50
H7E0.72370.41080.04980.109*0.50
O80.1259 (9)0.5103 (8)−0.0015 (6)0.126 (3)0.50
H8A0.05800.49120.05790.151*0.50
H8B0.09360.5213−0.05960.151*0.50
C10.8435 (4)0.8683 (3)0.4221 (3)0.0473 (9)
C20.8803 (3)0.9762 (3)0.3073 (3)0.0411 (8)
C30.9641 (4)1.0799 (3)0.2834 (3)0.0519 (9)
H31.00081.09110.33950.062*
C40.9924 (4)1.1670 (3)0.1738 (4)0.0594 (11)
H41.05021.23720.15550.071*
C50.9367 (4)1.1518 (3)0.0912 (4)0.0552 (10)
H50.95651.20980.01690.066*
C60.8496 (3)1.0464 (3)0.1233 (3)0.0405 (8)
C70.8161 (5)1.2156 (4)−0.1267 (4)0.0803 (14)
H7A0.78241.2723−0.08160.120*
H7B0.77911.2456−0.19370.120*
H7C0.91761.2161−0.14900.120*
C80.7683 (4)1.0808 (4)−0.0581 (3)0.0549 (10)
C90.6970 (5)1.0015 (4)−0.0857 (4)0.0656 (11)
H90.67031.0198−0.15410.079*
C100.6709 (4)0.8872 (4)0.0073 (3)0.0559 (10)
C110.6005 (5)0.7670 (4)0.0192 (4)0.0819 (14)
H11A0.67080.7055−0.00190.123*
H11B0.53630.7889−0.02990.123*
H11C0.54920.72910.09710.123*
C120.8506 (4)0.5290 (4)0.2427 (4)0.0606 (10)
C130.6970 (4)0.4915 (3)0.2970 (3)0.0460 (8)
C140.6473 (5)0.3689 (3)0.3275 (4)0.0582 (10)
H140.70750.30090.31420.070*
C150.5062 (5)0.3488 (4)0.3784 (4)0.0665 (12)
H150.47060.26550.40160.080*
C160.4175 (4)0.4493 (3)0.3953 (3)0.0568 (10)
H160.32140.43660.42830.068*
C170.4754 (3)0.5708 (3)0.3617 (3)0.0402 (8)
C180.1427 (4)0.6136 (4)0.4516 (4)0.0638 (11)
H18A0.05280.65600.46990.096*
H18B0.15540.54230.51760.096*
H18C0.14580.58120.39010.096*
C190.2586 (4)0.7093 (4)0.4162 (3)0.0477 (9)
C200.2486 (4)0.8342 (4)0.4157 (3)0.0524 (9)
H200.16640.87840.44020.063*
C210.3839 (4)0.8842 (3)0.3718 (3)0.0479 (9)
C220.4326 (5)1.0165 (4)0.3515 (4)0.0681 (12)
H22A0.41851.03140.42340.102*
H22B0.37941.08060.30450.102*
H22C0.53131.02310.31360.102*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Mn10.0390 (3)0.0378 (3)0.0600 (4)−0.0121 (2)−0.0096 (3)−0.0103 (2)
N10.0341 (15)0.0344 (14)0.0472 (17)−0.0064 (11)−0.0079 (13)−0.0103 (13)
N20.0423 (16)0.0408 (15)0.0466 (18)−0.0084 (12)−0.0089 (13)−0.0081 (13)
N30.0523 (18)0.0414 (16)0.0567 (19)−0.0142 (13)−0.0139 (15)−0.0131 (14)
N40.0398 (16)0.0349 (14)0.0423 (16)−0.0043 (12)−0.0094 (13)−0.0111 (12)
N50.0324 (15)0.0432 (15)0.0502 (17)−0.0079 (12)−0.0081 (13)−0.0142 (13)
N60.0424 (16)0.0361 (14)0.0558 (18)−0.0077 (12)−0.0109 (14)−0.0149 (13)
O10.0644 (18)0.0632 (16)0.0582 (17)−0.0303 (13)−0.0210 (14)0.0016 (13)
O20.0605 (17)0.0727 (18)0.0581 (17)−0.0093 (13)−0.0234 (14)−0.0170 (14)
O30.0387 (15)0.0537 (17)0.120 (3)−0.0087 (12)0.0034 (16)−0.0222 (17)
O40.071 (2)0.070 (2)0.108 (3)0.0221 (17)−0.0015 (18)−0.0313 (19)
O50.084 (3)0.144 (3)0.108 (3)−0.040 (2)−0.045 (2)0.028 (2)
O60.126 (4)0.177 (5)0.114 (3)−0.021 (3)−0.015 (3)−0.017 (3)
O70.081 (4)0.142 (6)0.066 (4)0.037 (4)−0.023 (3)−0.062 (4)
O80.145 (7)0.129 (7)0.061 (4)0.021 (6)0.007 (5)−0.010 (4)
C10.0324 (18)0.054 (2)0.054 (2)−0.0042 (15)−0.0106 (17)−0.0144 (18)
C20.0322 (17)0.0385 (17)0.055 (2)0.0022 (13)−0.0122 (16)−0.0177 (16)
C30.050 (2)0.0410 (19)0.074 (3)−0.0029 (16)−0.023 (2)−0.0244 (19)
C40.063 (3)0.0334 (18)0.083 (3)−0.0141 (17)−0.024 (2)−0.0111 (19)
C50.056 (2)0.0367 (19)0.067 (3)−0.0109 (16)−0.017 (2)−0.0050 (18)
C60.0348 (18)0.0354 (17)0.049 (2)−0.0029 (13)−0.0084 (15)−0.0116 (15)
C70.092 (4)0.076 (3)0.058 (3)−0.033 (3)−0.023 (3)0.010 (2)
C80.052 (2)0.057 (2)0.048 (2)−0.0097 (18)−0.0058 (18)−0.0100 (18)
C90.071 (3)0.079 (3)0.050 (2)−0.011 (2)−0.019 (2)−0.017 (2)
C100.055 (2)0.059 (2)0.059 (2)−0.0113 (18)−0.017 (2)−0.021 (2)
C110.097 (4)0.075 (3)0.089 (3)−0.025 (3)−0.037 (3)−0.027 (3)
C120.055 (2)0.053 (2)0.061 (3)0.0065 (19)−0.005 (2)−0.011 (2)
C130.050 (2)0.0394 (18)0.045 (2)0.0019 (16)−0.0124 (17)−0.0092 (15)
C140.073 (3)0.0379 (19)0.070 (3)0.0035 (18)−0.023 (2)−0.0216 (18)
C150.080 (3)0.040 (2)0.083 (3)−0.019 (2)−0.021 (2)−0.018 (2)
C160.054 (2)0.048 (2)0.068 (3)−0.0198 (18)−0.012 (2)−0.0146 (19)
C170.0403 (19)0.0407 (18)0.0412 (19)−0.0100 (14)−0.0101 (15)−0.0123 (15)
C180.036 (2)0.072 (3)0.071 (3)−0.0153 (18)−0.0052 (19)−0.010 (2)
C190.037 (2)0.059 (2)0.043 (2)−0.0054 (16)−0.0095 (16)−0.0101 (17)
C200.041 (2)0.059 (2)0.053 (2)0.0059 (17)−0.0089 (17)−0.0160 (18)
C210.047 (2)0.0443 (19)0.053 (2)0.0033 (16)−0.0162 (17)−0.0159 (17)
C220.067 (3)0.048 (2)0.096 (3)0.0025 (19)−0.021 (2)−0.032 (2)

Geometric parameters (Å, °)

Mn1—O12.143 (3)C4—C51.373 (5)
Mn1—O32.154 (3)C4—H40.9300
Mn1—N42.199 (3)C5—C61.388 (4)
Mn1—N12.209 (2)C5—H50.9300
Mn1—N32.267 (3)C7—C81.486 (5)
Mn1—N62.277 (3)C7—H7A0.9600
N1—C61.327 (4)C7—H7B0.9600
N1—C21.336 (4)C7—H7C0.9600
N2—C81.364 (5)C8—C91.353 (5)
N2—N31.375 (4)C9—C101.393 (6)
N2—C61.419 (4)C9—H90.9300
N3—C101.311 (5)C10—C111.491 (5)
N4—C171.322 (4)C11—H11A0.9600
N4—C131.336 (4)C11—H11B0.9600
N5—C191.368 (4)C11—H11C0.9600
N5—N61.375 (3)C12—C131.519 (5)
N5—C171.416 (4)C13—C141.365 (5)
N6—C211.332 (4)C14—C151.371 (6)
O1—C11.259 (4)C14—H140.9300
O2—C11.227 (4)C15—C161.364 (5)
O3—C121.247 (5)C15—H150.9300
O4—C121.235 (5)C16—C171.382 (4)
O5—H5A0.8500C16—H160.9300
O5—H5B0.8500C18—C191.500 (5)
O6—H6A0.8500C18—H18A0.9600
O6—H6B0.8500C18—H18B0.9600
O7—H7D0.8499C18—H18C0.9600
O7—H7E0.8500C19—C201.353 (5)
O8—H8A0.8500C20—C211.389 (5)
O8—H8B0.8500C20—H200.9300
C1—C21.522 (5)C21—C221.486 (5)
C2—C31.372 (5)C22—H22A0.9600
C3—C41.377 (5)C22—H22B0.9600
C3—H30.9300C22—H22C0.9600
O1—Mn1—O396.39 (13)H7A—C7—H7B109.5
O1—Mn1—N4108.16 (10)C8—C7—H7C109.5
O3—Mn1—N473.44 (10)H7A—C7—H7C109.5
O1—Mn1—N173.16 (10)H7B—C7—H7C109.5
O3—Mn1—N1104.29 (10)C9—C8—N2106.2 (3)
N4—Mn1—N1177.41 (10)C9—C8—C7128.3 (4)
O1—Mn1—N3143.23 (10)N2—C8—C7125.5 (4)
O3—Mn1—N392.96 (12)C8—C9—C10107.2 (4)
N4—Mn1—N3108.59 (10)C8—C9—H9126.4
N1—Mn1—N370.08 (10)C10—C9—H9126.4
O1—Mn1—N695.74 (11)N3—C10—C9110.2 (3)
O3—Mn1—N6142.92 (10)N3—C10—C11121.0 (4)
N4—Mn1—N669.49 (10)C9—C10—C11128.8 (4)
N1—Mn1—N6112.76 (9)C10—C11—H11A109.5
N3—Mn1—N697.89 (11)C10—C11—H11B109.5
C6—N1—C2120.1 (3)H11A—C11—H11B109.5
C6—N1—Mn1122.8 (2)C10—C11—H11C109.5
C2—N1—Mn1116.5 (2)H11A—C11—H11C109.5
C8—N2—N3110.3 (3)H11B—C11—H11C109.5
C8—N2—C6132.4 (3)O4—C12—O3126.6 (4)
N3—N2—C6117.2 (3)O4—C12—C13117.5 (4)
C10—N3—N2106.0 (3)O3—C12—C13115.9 (3)
C10—N3—Mn1137.2 (2)N4—C13—C14121.7 (3)
N2—N3—Mn1116.4 (2)N4—C13—C12113.6 (3)
C17—N4—C13119.7 (3)C14—C13—C12124.6 (3)
C17—N4—Mn1123.7 (2)C13—C14—C15118.2 (4)
C13—N4—Mn1116.5 (2)C13—C14—H14120.9
C19—N5—N6110.6 (3)C15—C14—H14120.9
C19—N5—C17133.0 (3)C16—C15—C14120.8 (3)
N6—N5—C17116.4 (2)C16—C15—H15119.6
C21—N6—N5105.3 (3)C14—C15—H15119.6
C21—N6—Mn1137.7 (2)C15—C16—C17117.7 (4)
N5—N6—Mn1116.96 (19)C15—C16—H16121.1
C1—O1—Mn1121.2 (2)C17—C16—H16121.1
C12—O3—Mn1120.3 (2)N4—C17—C16121.9 (3)
H5A—O5—H5B108.4N4—C17—N5113.3 (3)
H6A—O6—H6B108.5C16—C17—N5124.8 (3)
H7D—O7—H7E108.6C19—C18—H18A109.5
H8A—O8—H8B108.7C19—C18—H18B109.5
O2—C1—O1126.6 (3)H18A—C18—H18B109.5
O2—C1—C2118.3 (3)C19—C18—H18C109.5
O1—C1—C2115.1 (3)H18A—C18—H18C109.5
N1—C2—C3121.5 (3)H18B—C18—H18C109.5
N1—C2—C1113.6 (3)C20—C19—N5106.5 (3)
C3—C2—C1124.9 (3)C20—C19—C18128.6 (3)
C2—C3—C4118.1 (3)N5—C19—C18124.9 (3)
C2—C3—H3121.0C19—C20—C21107.2 (3)
C4—C3—H3121.0C19—C20—H20126.4
C5—C4—C3121.1 (3)C21—C20—H20126.4
C5—C4—H4119.4N6—C21—C20110.4 (3)
C3—C4—H4119.4N6—C21—C22119.9 (3)
C4—C5—C6117.2 (3)C20—C21—C22129.6 (3)
C4—C5—H5121.4C21—C22—H22A109.5
C6—C5—H5121.4C21—C22—H22B109.5
N1—C6—C5121.9 (3)H22A—C22—H22B109.5
N1—C6—N2112.8 (3)C21—C22—H22C109.5
C5—C6—N2125.2 (3)H22A—C22—H22C109.5
C8—C7—H7A109.5H22B—C22—H22C109.5
C8—C7—H7B109.5
O1—Mn1—N1—C6177.3 (3)O1—C1—C2—N13.9 (4)
O3—Mn1—N1—C684.8 (3)O2—C1—C2—C33.5 (5)
N4—Mn1—N1—C656 (2)O1—C1—C2—C3−175.3 (3)
N3—Mn1—N1—C6−3.1 (2)N1—C2—C3—C4−1.7 (5)
N6—Mn1—N1—C6−93.5 (3)C1—C2—C3—C4177.4 (3)
O1—Mn1—N1—C25.3 (2)C2—C3—C4—C51.0 (6)
O3—Mn1—N1—C2−87.1 (2)C3—C4—C5—C60.8 (6)
N4—Mn1—N1—C2−116 (2)C2—N1—C6—C51.5 (5)
N3—Mn1—N1—C2−175.1 (3)Mn1—N1—C6—C5−170.2 (3)
N6—Mn1—N1—C294.5 (2)C2—N1—C6—N2179.3 (3)
C8—N2—N3—C100.3 (4)Mn1—N1—C6—N27.6 (4)
C6—N2—N3—C10−178.9 (3)C4—C5—C6—N1−2.1 (5)
C8—N2—N3—Mn1−173.8 (2)C4—C5—C6—N2−179.7 (3)
C6—N2—N3—Mn17.0 (4)C8—N2—C6—N1171.8 (3)
O1—Mn1—N3—C10−173.2 (3)N3—N2—C6—N1−9.3 (4)
O3—Mn1—N3—C1082.0 (4)C8—N2—C6—C5−10.5 (6)
N4—Mn1—N3—C108.5 (4)N3—N2—C6—C5168.5 (3)
N1—Mn1—N3—C10−173.9 (4)N3—N2—C8—C90.1 (4)
N6—Mn1—N3—C10−62.5 (4)C6—N2—C8—C9179.1 (3)
O1—Mn1—N3—N2−1.6 (3)N3—N2—C8—C7177.4 (4)
O3—Mn1—N3—N2−106.4 (2)C6—N2—C8—C7−3.6 (6)
N4—Mn1—N3—N2−179.9 (2)N2—C8—C9—C10−0.4 (5)
N1—Mn1—N3—N2−2.3 (2)C7—C8—C9—C10−177.6 (4)
N6—Mn1—N3—N2109.2 (2)N2—N3—C10—C9−0.5 (4)
O1—Mn1—N4—C1787.0 (3)Mn1—N3—C10—C9171.7 (3)
O3—Mn1—N4—C17178.4 (3)N2—N3—C10—C11177.8 (4)
N1—Mn1—N4—C17−153 (2)Mn1—N3—C10—C11−10.0 (6)
N3—Mn1—N4—C17−94.1 (3)C8—C9—C10—N30.6 (5)
N6—Mn1—N4—C17−2.5 (2)C8—C9—C10—C11−177.6 (4)
O1—Mn1—N4—C13−89.2 (2)Mn1—O3—C12—O4177.1 (4)
O3—Mn1—N4—C132.2 (2)Mn1—O3—C12—C13−2.7 (5)
N1—Mn1—N4—C1331 (2)C17—N4—C13—C14−1.8 (5)
N3—Mn1—N4—C1389.7 (2)Mn1—N4—C13—C14174.6 (3)
N6—Mn1—N4—C13−178.6 (3)C17—N4—C13—C12179.6 (3)
C19—N5—N6—C210.7 (4)Mn1—N4—C13—C12−4.1 (4)
C17—N5—N6—C21−176.2 (3)O4—C12—C13—N4−175.3 (4)
C19—N5—N6—Mn1179.8 (2)O3—C12—C13—N44.5 (5)
C17—N5—N6—Mn12.9 (3)O4—C12—C13—C146.1 (6)
O1—Mn1—N6—C2171.0 (4)O3—C12—C13—C14−174.1 (4)
O3—Mn1—N6—C21179.6 (3)N4—C13—C14—C150.0 (6)
N4—Mn1—N6—C21178.2 (4)C12—C13—C14—C15178.4 (4)
N1—Mn1—N6—C21−3.1 (4)C13—C14—C15—C161.6 (6)
N3—Mn1—N6—C21−74.8 (4)C14—C15—C16—C17−1.3 (6)
O1—Mn1—N6—N5−107.7 (2)C13—N4—C17—C162.1 (5)
O3—Mn1—N6—N50.9 (3)Mn1—N4—C17—C16−174.0 (3)
N4—Mn1—N6—N5−0.4 (2)C13—N4—C17—N5−179.2 (3)
N1—Mn1—N6—N5178.2 (2)Mn1—N4—C17—N54.7 (4)
N3—Mn1—N6—N5106.6 (2)C15—C16—C17—N4−0.5 (6)
O3—Mn1—O1—C199.9 (3)C15—C16—C17—N5−179.1 (3)
N4—Mn1—O1—C1174.5 (3)C19—N5—C17—N4179.2 (3)
N1—Mn1—O1—C1−3.2 (3)N6—N5—C17—N4−4.7 (4)
N3—Mn1—O1—C1−3.8 (4)C19—N5—C17—C16−2.1 (6)
N6—Mn1—O1—C1−115.3 (3)N6—N5—C17—C16173.9 (3)
O1—Mn1—O3—C12107.5 (3)N6—N5—C19—C20−1.0 (4)
N4—Mn1—O3—C120.5 (3)C17—N5—C19—C20175.2 (3)
N1—Mn1—O3—C12−178.3 (3)N6—N5—C19—C18177.7 (3)
N3—Mn1—O3—C12−108.1 (3)C17—N5—C19—C18−6.1 (6)
N6—Mn1—O3—C12−0.8 (5)N5—C19—C20—C210.8 (4)
Mn1—O1—C1—O2−177.9 (3)C18—C19—C20—C21−177.8 (4)
Mn1—O1—C1—C20.8 (4)N5—N6—C21—C20−0.2 (4)
C6—N1—C2—C30.5 (5)Mn1—N6—C21—C20−179.0 (3)
Mn1—N1—C2—C3172.7 (2)N5—N6—C21—C22−179.9 (3)
C6—N1—C2—C1−178.8 (3)Mn1—N6—C21—C221.4 (6)
Mn1—N1—C2—C1−6.6 (3)C19—C20—C21—N6−0.4 (4)
O2—C1—C2—N1−177.3 (3)C19—C20—C21—C22179.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.851.982.830 (4)178
O5—H5B···O4ii0.851.972.819 (5)178
O6—H6A···O50.851.892.740 (6)176
O6—H6B···O7iii0.852.002.843 (8)175
O7—H7D···O60.851.872.715 (8)173
O7—H7E···O8iii0.851.652.497 (12)172
O8—H8A···O4ii0.852.002.829 (8)167
O8—H8B···O4iii0.852.002.829 (9)166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SG2211).

References

  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXL97 andSHELXS97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Yin, X.-H., Zhao, K., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m2926.
  • Zhao, K., Yin, X.-H., Feng, Y. & Zhu, J. (2007). Acta Cryst. E63, m3024.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography