PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m79.
Published online 2007 December 6. doi:  10.1107/S1600536807062836
PMCID: PMC2914957

Bis(4′-chloro-2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)iron(II) dinitrate dihydrate

Abstract

The title complex, [Fe(C15H10ClN3)2](NO3)2·2H2O, has a six-coordinate iron(II) center balanced by two nitrate anions. The Fe atom lies on a twofold rotation axis. The complex exhibits an octa­hedral coordination configuration, where the dihedral angle between the two planar tridentate ligands is 92.4 (1)°. The crystal structure involves O—H(...)O hydrogen bonds.

Related literature

For the related hydrochloride tetrafluoridoborate and hydrochloride hexafluorophosphate of 4′-chloro-2,2′:6′,2′′-terpyridine, see: Huang & Qian (2007a [triangle]). For the related RuII, CuII, ZnII, NiII and FeII complexes of 4′-chloro-2,2′:6′,2′′-terpyridine, see: Huang & Qian 2007b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m79-scheme1.jpg

Experimental

Crystal data

  • [Fe(C15H10ClN3)2](NO3)2·2H2O
  • M r = 751.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m79-efi1.jpg
  • a = 18.049 (2) Å
  • b = 18.255 (3) Å
  • c = 10.0741 (14) Å
  • β = 102.668 (2)°
  • V = 3238.5 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.70 mm−1
  • T = 291 (2) K
  • 0.12 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART 1K CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.922, T max = 0.931
  • 8547 measured reflections
  • 3192 independent reflections
  • 2120 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.116
  • S = 0.97
  • 3192 reflections
  • 233 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2000 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536807062836/at2511sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062836/at2511Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

WH acknowledges the Major State Basic Research Development Programs (No. 2006CB806104 and No. 2007­CB925101), the National Natural Science Foundation of China (No. 20301009) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial aid.

supplementary crystallographic information

Comment

We have newly reported the hydrochlorate tetrafluoroborate and hydrochlorate hexafluorophosphorate of 4'-chloro-2,2':6',2''-terpyridine (Huang & Qian, 2007a), and Ru(II), Cu(II), Zn(II), Ni(II) and Fe(II) complexes of 4'-chloro-2,2':6',2''-terpyridine with the metal/ligand ratios of 1:1 and 1:2. In this paper, we report the structure of a ferrous nitrate complex bearing the same 4'-chloro-2,2':6',2''-terpyridine ligand with the 1:2 metal/ligand ratio.

The atom-numbering scheme of the title compound (I) is shown in Fig. 1, while selected bond distances and bond angles are given in Table 1. The iron(II) center displays a six-coordinate octahedral configuration where each 4'-chloro-2,2':6',2'-terpyridine molecule serves as a 3 N tridentate ligand. The six Fe—N bond lengths fall with the normal ranges of 1.880 (3)—1.975 (2) Å (Huang & Qian, 2007b), where the two central Fe—N bond lengths are somewhat shorter than the side ones. The two terpyridine ligands are planar and the dihedral angle between them is 92.4 (1)°. In addition, O—H···O hydrogen bonds are observed between the hydrogen atoms of water molecule and the oxygen atoms of nitrate anions (Table 2).

Experimental

The treatment of Fe(NO3)2.6H2O (0.072 g, 0.25 mmol) and 4'-chloro-2,2':6',2'-terpyridine (0.134 g, 0.50 mmol) in 30 cm3 me thanol under reflux condition for 1 h produced deep red microcrystals in a yield of 83% (0.156 g). Anal. Calcd. for FeC30H24N8Cl2O8: C: 47.96, H: 3.22, N: 14.91. Found: C: 47.88; H: 3.24; N: 14.98. Main FT—IR (KBr pellets, cm-1): 3447 (s), 1663 (s), 1560 (s), 1545 (s), 1466 (m) and 1368 (s). Single crystals of the title complex suitable for X-ray diffraction measurement were obtained from the mixture of ethanol and water solutions at a ratio of 3:1 by slow evaporation in air at ambient temperature.

Refinement

The two H atoms bonded to the water oxygen atom were located in the difference synthesis and were refined isotropically, whereas the other H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
A drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Fe(C15H10ClN3)2](NO3)2·2H2OF000 = 1536
Mr = 751.32Dx = 1.541 Mg m3
Monoclinic, C2/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2481 reflections
a = 18.049 (2) Åθ = 2.3–25.0º
b = 18.255 (3) ŵ = 0.70 mm1
c = 10.0741 (14) ÅT = 291 (2) K
β = 102.668 (2)ºBlock, red
V = 3238.5 (8) Å30.12 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1K CCD area-detector diffractometer3192 independent reflections
Radiation source: fine-focus sealed tube2120 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.042
T = 291(2) Kθmax = 26.0º
[var phi] and ω scansθmin = 1.6º
Absorption correction: multi-scan(SADABS; Bruker, 2000)h = −21→22
Tmin = 0.922, Tmax = 0.931k = −15→22
8547 measured reflectionsl = −12→11

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116  w = 1/[σ2(Fo2) + (0.0635P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3192 reflectionsΔρmax = 0.43 e Å3
233 parametersΔρmin = −0.41 e Å3
Primary atom site location: structure-invariant direct methodsExtinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Fe11.00000.25347 (2)0.25000.04349 (18)
C10.89844 (14)0.28704 (15)0.4385 (3)0.0581 (7)
H10.90740.33640.42500.070*
C20.85298 (17)0.26824 (18)0.5259 (3)0.0733 (9)
H20.83300.30450.57270.088*
C30.83702 (17)0.19608 (19)0.5445 (3)0.0737 (9)
H30.80580.18290.60270.088*
C40.86806 (14)0.14357 (16)0.4753 (3)0.0609 (7)
H40.85690.09430.48440.073*
C50.91552 (13)0.16424 (13)0.3929 (2)0.0484 (6)
C60.95684 (13)0.11401 (13)0.3214 (2)0.0490 (6)
C70.95566 (15)0.03835 (13)0.3241 (3)0.0566 (7)
H70.92620.01300.37390.068*
C81.00000.00191 (19)0.25000.0569 (10)
C90.87358 (14)0.22036 (15)0.0110 (3)0.0552 (7)
H90.88320.17100.03050.066*
C100.81690 (16)0.23907 (17)−0.0981 (3)0.0652 (8)
H100.78880.2028−0.15140.078*
C110.80185 (16)0.31174 (18)−0.1283 (3)0.0674 (8)
H110.76340.3251−0.20190.081*
C120.84469 (14)0.36479 (15)−0.0478 (3)0.0582 (7)
H120.83580.4143−0.06660.070*
C130.90054 (12)0.34274 (13)0.0603 (2)0.0459 (6)
C140.94967 (13)0.39307 (13)0.1540 (2)0.0461 (6)
C150.94826 (14)0.46877 (13)0.1511 (3)0.0554 (7)
H150.91370.49410.08490.066*
C161.00000.50551 (19)0.25000.0563 (9)
Cl11.0000−0.09281 (5)0.25000.0883 (4)
Cl21.00000.60025 (6)0.25000.0908 (4)
H4A0.8087 (18)0.0502 (17)−0.052 (3)0.069 (11)*
H4B0.809 (3)0.036 (3)0.071 (5)0.16 (2)*
N10.93034 (11)0.23672 (10)0.3718 (2)0.0483 (5)
N21.00000.15050 (14)0.25000.0450 (7)
N30.91592 (11)0.27102 (10)0.0912 (2)0.0462 (5)
N41.00000.35651 (14)0.25000.0421 (6)
N50.72096 (17)0.05138 (16)0.6869 (3)0.0819 (8)
O10.7680 (2)0.0029 (2)0.7212 (3)0.1692 (17)
O20.6813 (2)0.05091 (14)0.5761 (4)0.1604 (16)
O30.71662 (18)0.09870 (17)0.7664 (3)0.1287 (11)
O40.84123 (15)0.04554 (14)0.0124 (3)0.0804 (7)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Fe10.0474 (3)0.0321 (3)0.0510 (3)0.0000.0108 (2)0.000
C10.0563 (16)0.0513 (16)0.0695 (18)−0.0025 (13)0.0201 (14)−0.0072 (14)
C20.075 (2)0.075 (2)0.078 (2)−0.0025 (17)0.0355 (17)−0.0120 (17)
C30.0697 (19)0.087 (2)0.072 (2)−0.0072 (17)0.0318 (16)0.0073 (18)
C40.0575 (16)0.0599 (17)0.0656 (17)−0.0099 (14)0.0140 (14)0.0088 (15)
C50.0479 (14)0.0449 (14)0.0500 (14)−0.0026 (12)0.0059 (11)0.0047 (12)
C60.0509 (14)0.0398 (14)0.0520 (15)−0.0021 (12)0.0020 (12)0.0048 (12)
C70.0576 (16)0.0429 (15)0.0612 (17)−0.0068 (13)−0.0043 (13)0.0098 (13)
C80.062 (2)0.0336 (19)0.063 (2)0.000−0.013 (2)0.000
C90.0576 (16)0.0470 (14)0.0608 (17)−0.0072 (12)0.0128 (13)−0.0106 (13)
C100.0645 (18)0.071 (2)0.0578 (17)−0.0130 (16)0.0088 (14)−0.0152 (15)
C110.0615 (17)0.082 (2)0.0537 (17)−0.0016 (16)0.0021 (13)−0.0035 (16)
C120.0598 (16)0.0551 (16)0.0566 (16)0.0010 (13)0.0058 (13)0.0016 (13)
C130.0450 (13)0.0427 (14)0.0497 (14)0.0014 (11)0.0094 (11)0.0014 (11)
C140.0468 (14)0.0388 (13)0.0506 (14)0.0008 (11)0.0060 (11)0.0008 (11)
C150.0576 (16)0.0406 (14)0.0635 (17)0.0034 (12)0.0035 (13)0.0068 (12)
C160.066 (2)0.0329 (18)0.068 (2)0.0000.011 (2)0.000
Cl10.1096 (9)0.0342 (5)0.1052 (9)0.000−0.0113 (7)0.000
Cl20.1091 (9)0.0332 (5)0.1170 (10)0.000−0.0033 (8)0.000
N10.0486 (12)0.0416 (12)0.0539 (12)0.0015 (9)0.0095 (10)0.0020 (9)
N20.0479 (16)0.0347 (15)0.0522 (17)0.0000.0107 (13)0.000
N30.0512 (12)0.0390 (11)0.0501 (12)−0.0044 (9)0.0147 (9)−0.0042 (9)
N40.0444 (15)0.0335 (14)0.0480 (16)0.0000.0096 (13)0.000
N50.083 (2)0.0703 (19)0.082 (2)−0.0056 (15)−0.0041 (17)−0.0227 (16)
O10.159 (3)0.232 (5)0.097 (2)0.093 (3)−0.015 (2)−0.032 (2)
O20.204 (3)0.0771 (18)0.142 (3)0.033 (2)−0.089 (3)−0.0424 (18)
O30.154 (3)0.114 (2)0.116 (2)−0.015 (2)0.025 (2)−0.0545 (19)
O40.0779 (16)0.0696 (15)0.0858 (18)0.0044 (12)0.0011 (16)−0.0029 (13)

Geometric parameters (Å, °)

Fe1—N21.880 (3)C9—C101.371 (4)
Fe1—N41.881 (3)C9—H90.9300
Fe1—N11.964 (2)C10—C111.375 (4)
Fe1—N1i1.964 (2)C10—H100.9300
Fe1—N31.975 (2)C11—C121.385 (4)
Fe1—N3i1.975 (2)C11—H110.9300
C1—N11.340 (3)C12—C131.372 (3)
C1—C21.373 (4)C12—H120.9300
C1—H10.9300C13—N31.360 (3)
C2—C31.370 (4)C13—C141.468 (3)
C2—H20.9300C14—N41.349 (3)
C3—C41.374 (4)C14—C151.382 (3)
C3—H30.9300C15—C161.381 (3)
C4—C51.370 (3)C15—H150.9300
C4—H40.9300C16—C15i1.381 (3)
C5—N11.375 (3)C16—Cl21.729 (4)
C5—C61.467 (3)N2—C6i1.346 (3)
C6—N21.346 (3)N4—C14i1.349 (3)
C6—C71.382 (3)N5—O21.187 (3)
C7—C81.379 (3)N5—O31.193 (3)
C7—H70.9300N5—O11.223 (4)
C8—C7i1.379 (3)O4—H4A0.78 (3)
C8—Cl11.729 (4)O4—H4B0.93 (5)
C9—N31.349 (3)
N2—Fe1—N4180.000 (1)N3—C9—H9118.8
N2—Fe1—N181.04 (6)C10—C9—H9118.8
N4—Fe1—N198.96 (6)C9—C10—C11119.6 (3)
N2—Fe1—N1i81.04 (6)C9—C10—H10120.2
N4—Fe1—N1i98.96 (6)C11—C10—H10120.2
N1—Fe1—N1i162.09 (11)C10—C11—C12119.1 (3)
N2—Fe1—N399.34 (6)C10—C11—H11120.4
N4—Fe1—N380.66 (6)C12—C11—H11120.4
N1—Fe1—N392.75 (8)C13—C12—C11118.6 (3)
N1i—Fe1—N390.14 (8)C13—C12—H12120.7
N2—Fe1—N3i99.34 (6)C11—C12—H12120.7
N4—Fe1—N3i80.66 (6)N3—C13—C12122.8 (2)
N1—Fe1—N3i90.14 (8)N3—C13—C14113.0 (2)
N1i—Fe1—N3i92.75 (8)C12—C13—C14124.2 (2)
N3—Fe1—N3i161.33 (11)N4—C14—C15121.1 (2)
N1—C1—C2122.2 (3)N4—C14—C13111.6 (2)
N1—C1—H1118.9C15—C14—C13127.3 (2)
C2—C1—H1118.9C16—C15—C14117.6 (2)
C3—C2—C1120.1 (3)C16—C15—H15121.2
C3—C2—H2120.0C14—C15—H15121.2
C1—C2—H2120.0C15—C16—C15i121.9 (3)
C2—C3—C4118.7 (3)C15—C16—Cl2119.06 (16)
C2—C3—H3120.6C15i—C16—Cl2119.06 (16)
C4—C3—H3120.6C1—N1—C5117.6 (2)
C5—C4—C3119.6 (3)C1—N1—Fe1127.63 (18)
C5—C4—H4120.2C5—N1—Fe1114.76 (16)
C3—C4—H4120.2C6i—N2—C6120.7 (3)
C4—C5—N1121.8 (2)C6i—N2—Fe1119.65 (14)
C4—C5—C6125.3 (2)C6—N2—Fe1119.65 (14)
N1—C5—C6112.9 (2)C9—N3—C13117.5 (2)
N2—C6—C7121.2 (2)C9—N3—Fe1127.40 (18)
N2—C6—C5111.7 (2)C13—N3—Fe1115.06 (15)
C7—C6—C5127.1 (2)C14i—N4—C14120.7 (3)
C8—C7—C6117.3 (3)C14i—N4—Fe1119.65 (13)
C8—C7—H7121.4C14—N4—Fe1119.65 (13)
C6—C7—H7121.4O2—N5—O3121.5 (4)
C7—C8—C7i122.3 (3)O2—N5—O1119.9 (3)
C7—C8—Cl1118.84 (17)O3—N5—O1118.6 (3)
C7i—C8—Cl1118.84 (17)H4A—O4—H4B95 (3)
N3—C9—C10122.3 (3)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4B···O1ii0.93 (5)1.96 (5)2.859 (5)162 (4)
O4—H4A···O3iii0.78 (3)2.36 (3)3.114 (4)164 (3)
O4—H4A···O1iii0.78 (3)2.40 (3)3.042 (4)140 (3)

Symmetry codes: (ii) x, −y, z−1/2; (iii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2511).

References

  • Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a), SADABS (Version 2.03) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, W. & Qian, H. F. (2007a). J. Mol. Struct.832, 108–106.
  • Huang, W. & Qian, H. F. (2007b). J. Mol. Struct. In the press. doi:10.1016/j.molstruc.2007.03.038.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography