PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m74–m75.
Published online 2007 December 6. doi:  10.1107/S1600536807062952
PMCID: PMC2914953

[(6-Methyl-2-pyridylmeth­yl)(2-pyridylmeth­yl)amine][(2-pyridylmeth­yl)amine]copper(II) bis­(perchlorate)

Abstract

The title compound, [Cu(C6H8N2)(C13H15N3)](ClO4)2, is a mixed ligand complex with the CuII atom coordinated by (6-methyl-2-pyridylmeth­yl)(2-pyridylmeth­yl)amine, acting as a tridentate ligand, and 2-(2-amino­meth­yl)pyridine, as a bidentate ligand, leading to an N5 square-pyramidal geometry. The amine H atoms are involved in hydrogen bonding to the perchlorate O atoms and there are extensive but weak inter­molecular C—H(...)O inter­actions in the crystal structure. The perchlorate ions are each disordered over two positions, with site occupancies of 0.601 (8):0.399 (8) and 0.659 (11):0.341 (11).

Related literature

For related literature, see: Cho et al. (2006 [triangle]); Gultneh et al. (2003 [triangle]); Hetterscheid et al. (2004 [triangle]); Mizuno et al. (2003 [triangle]); Ohtsu et al. (2001 [triangle]); Oki et al. (1990 [triangle]); Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m74-scheme1.jpg

Experimental

Crystal data

  • [Cu(C6H8N2)(C13H15N3)](ClO4)2
  • M r = 583.86
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m74-efi1.jpg
  • a = 9.3178 (10) Å
  • b = 13.9691 (19) Å
  • c = 19.223 (3) Å
  • β = 99.931 (11)°
  • V = 2464.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.16 mm−1
  • T = 293 (2) K
  • 0.45 × 0.22 × 0.17 mm

Data collection

  • Bruker P4S diffractometer
  • Absorption correction: ψ-scan (North et al., 1968 [triangle]) T min = 0.444, T max = 0.505 (expected range = 0.722–0.821)
  • 5832 measured reflections
  • 5494 independent reflections
  • 3410 reflections with I > 2σ(I)
  • R int = 0.023
  • 3 standard reflections every 97 reflections intensity decay: < 2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.054
  • wR(F 2) = 0.145
  • S = 1.02
  • 5494 reflections
  • 394 parameters
  • 118 restraints
  • H-atom parameters constrained
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: XSCANS (Bruker, 1997 [triangle]); cell refinement: XSCANS; data reduction: SHELXTL (Bruker, 2000 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997 [triangle]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536807062952/tk2224sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536807062952/tk2224Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB acknowledges the Laboratory for the Structure of Matter at the Naval Research Laboratory, Washington DC, USA, for access to their diffractometers.

supplementary crystallographic information

Comment

The geometry around the CuII ion in (I), Fig. 1, is best described as a distorted square-pyramid (τ = 0.224; Addison et al., 1984), with an amine-N2 atom and three pyridine-N atoms (N1A, N1B, and N1) defining the basal plane. The Cu—Npyridyl bond distances are in the range of 1.993 (3)–2.039 (3) Å, and a Cu—Namine bond distance of 1.998 (3) Å. The axial position is occupied by the amine-N atom of the tridentate (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine ligand with a bond distance of 2.195 (3) Å consistent with a Jahn–Teller elongation. In (I), the Cu—Npyridyl and Cu—Namine bond distances of 1.993 (3) and 1.998 (3) Å, respectively, are shorter for the 2-(2-aminomethyl)pyridine ligand. The amine H atoms are involved in hydrogen bonding to the perchlorate-O atoms and there are extensive but weak intermolecular C—H···O interactions in the crystal structure (Fig. 2 & Table 1).

Experimental

Complex (I) was synthesized by reacting one equivalent each of the ligands (6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and 2-(2-aminomethyl)pyridine with Cu(ClO4)2.6H2O and triethylamine in methanol solution. After stirring the mixture for 12 h, the resulting precipitate was isolated and re-dissolved in acetonitrile solution. Dark-blue crystals suitable for X-ray diffraction analysis were obtained by layering this solution with diethyl ether.

Refinement

The two perchlorate anions are disordered over two conformations with occupancy factors of 0.601 (8), 0.399 (8) for the Cl1-perchlorate anion, and 0.659 (11), 0.341 (11) for the Cl2-perchlorate. Each of the perchlorates was constrained to adopt a tetrahedral geometry. The H atoms were included in the riding model approximation with N—H = 0.90–0.91 Å and C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C, N) (1.5Ueq(C) for methyl-H).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering scheme and displacement ellipsoids drawn at the 20% probabilty level.
Fig. 2.
The packing arrangement in (I) viewed down the a axis showing the N—H···O and C—H···O interactions as dashed bonds.

Crystal data

[Cu(C6H8N2)(C13H15N3)](ClO4)2F000 = 1196
Mr = 583.86Dx = 1.574 Mg m3
Monoclinic, P21/nMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 40 reflections
a = 9.3178 (10) Åθ = 5.1–12.5º
b = 13.9691 (19) ŵ = 1.16 mm1
c = 19.223 (3) ÅT = 293 (2) K
β = 99.931 (11)ºNeedle, dark blue
V = 2464.6 (6) Å30.45 × 0.22 × 0.17 mm
Z = 4

Data collection

Bruker P4S diffractometerRint = 0.023
Radiation source: fine-focus sealed tubeθmax = 27.5º
Monochromator: graphiteθmin = 2.6º
T = 293(2) Kh = 0→10
ω scansk = 0→18
Absorption correction: empirical (using intensity measurements)ψ-scan (North et al., 1968)l = −24→24
Tmin = 0.444, Tmax = 0.5053 standard reflections
5832 measured reflections every 97 reflections
5494 independent reflections intensity decay: <2%
3410 reflections with I > 2σ(I)

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.145  w = 1/[σ2(Fo2) + (0.0609P)2 + 0.9236P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
5494 reflectionsΔρmax = 0.40 e Å3
394 parametersΔρmin = −0.25 e Å3
118 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu0.82061 (5)0.75715 (3)0.13019 (2)0.05120 (17)
Cl10.31446 (13)0.67766 (9)0.06898 (6)0.0720 (3)
Cl20.79982 (12)0.81545 (7)−0.12730 (6)0.0641 (3)
O110.3166 (9)0.7331 (9)0.1286 (5)0.152 (4)0.601 (8)
O120.1675 (7)0.6764 (9)0.0381 (6)0.153 (4)0.601 (8)
O130.3873 (12)0.7307 (8)0.0218 (5)0.159 (4)0.601 (8)
O140.3776 (16)0.5943 (7)0.0733 (8)0.209 (5)0.601 (8)
O11A0.256 (2)0.7538 (10)0.0342 (10)0.183 (6)0.399 (8)
O12A0.4019 (17)0.6278 (13)0.0278 (9)0.175 (5)0.399 (8)
O13A0.2181 (16)0.6067 (10)0.0823 (9)0.155 (5)0.399 (8)
O14A0.4133 (19)0.6940 (15)0.1287 (7)0.194 (7)0.399 (8)
O210.9137 (13)0.7800 (12)−0.0783 (7)0.115 (4)0.659 (11)
O220.7988 (12)0.9139 (5)−0.1336 (7)0.135 (4)0.659 (11)
O230.7929 (11)0.7683 (7)−0.1931 (3)0.111 (3)0.659 (11)
O240.6647 (8)0.7921 (7)−0.1036 (5)0.124 (3)0.659 (11)
O21A0.941 (2)0.780 (2)−0.0915 (13)0.114 (7)0.341 (11)
O22A0.735 (2)0.8536 (14)−0.0741 (7)0.130 (5)0.341 (11)
O23A0.840 (3)0.8895 (13)−0.1687 (11)0.152 (8)0.341 (11)
O24A0.728 (2)0.7459 (10)−0.1643 (11)0.128 (6)0.341 (11)
N10.9081 (4)0.6274 (2)0.14801 (18)0.0582 (8)
N20.7204 (4)0.6948 (3)0.04142 (19)0.0711 (10)
H2B0.62560.68700.04390.085*
H2C0.72610.73360.00460.085*
N1.0124 (4)0.8442 (3)0.1207 (2)0.0676 (10)
H0A1.07780.80880.10150.081*
N1A0.7231 (4)0.8851 (2)0.10460 (16)0.0528 (8)
C10.9991 (6)0.5995 (4)0.2061 (3)0.0838 (15)
H1A1.02000.64190.24380.101*
C21.0625 (6)0.5108 (4)0.2119 (3)0.0928 (17)
H2A1.12390.49280.25320.111*
C31.0343 (6)0.4493 (4)0.1563 (3)0.0893 (16)
H3A1.07730.38900.15910.107*
C40.9423 (5)0.4767 (3)0.0963 (3)0.0747 (13)
H4A0.92130.43520.05810.090*
C50.8813 (5)0.5668 (3)0.0934 (2)0.0586 (10)
C60.7826 (7)0.6032 (4)0.0292 (3)0.0898 (16)
H6A0.83710.6090−0.00930.108*
H6B0.70480.55740.01510.108*
C1A0.5863 (5)0.9080 (3)0.1121 (2)0.0678 (12)
H1AA0.52720.86090.12640.081*
C2A0.5311 (6)0.9987 (4)0.0992 (3)0.0824 (15)
H2AA0.43621.01280.10480.099*
C3A0.6177 (7)1.0677 (4)0.0780 (3)0.0912 (17)
H3AA0.58201.12940.06880.109*
C4A0.7575 (6)1.0460 (3)0.0703 (2)0.0750 (13)
H4AA0.81791.09270.05650.090*
C5A0.8077 (5)0.9526 (3)0.0835 (2)0.0591 (10)
C6A0.9570 (5)0.9222 (3)0.0733 (2)0.0691 (12)
H6AA0.95350.90190.02480.083*
H6AB1.02280.97640.08190.083*
N1B0.8682 (4)0.8030 (2)0.23229 (17)0.0591 (9)
C1B0.7839 (6)0.7840 (4)0.2815 (3)0.0811 (16)
C11B0.6648 (6)0.7120 (5)0.2627 (3)0.105 (2)
H11A0.70630.65100.25460.158*
H11B0.60070.73220.22070.158*
H11C0.61080.70660.30080.158*
C2B0.8124 (8)0.8284 (6)0.3461 (3)0.120 (3)
H2BA0.75820.81310.38080.145*
C3B0.9221 (11)0.8958 (7)0.3591 (4)0.146 (4)
H3BA0.93950.92810.40200.175*
C4B1.0036 (8)0.9143 (4)0.3092 (4)0.116 (3)
H4BA1.07680.96020.31740.139*
C5B0.9783 (6)0.8648 (3)0.2458 (3)0.0728 (14)
C6B1.0765 (6)0.8746 (4)0.1921 (3)0.0904 (17)
H6BA1.10560.94110.19040.108*
H6BB1.16380.83720.20760.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu0.0506 (3)0.0457 (3)0.0560 (3)0.0023 (2)0.0057 (2)−0.0030 (2)
Cl10.0659 (7)0.0798 (8)0.0700 (7)−0.0029 (6)0.0109 (6)−0.0066 (6)
Cl20.0725 (7)0.0507 (6)0.0661 (6)0.0027 (5)0.0036 (5)−0.0019 (5)
O110.095 (6)0.257 (12)0.103 (6)0.002 (7)0.011 (5)−0.087 (7)
O120.062 (4)0.198 (10)0.191 (9)−0.012 (5)−0.003 (5)−0.065 (8)
O130.164 (8)0.168 (8)0.166 (7)−0.005 (7)0.083 (7)0.047 (7)
O140.248 (11)0.127 (7)0.258 (12)0.083 (8)0.063 (10)0.051 (8)
O11A0.175 (12)0.153 (11)0.226 (12)0.070 (9)0.045 (11)0.080 (9)
O12A0.165 (9)0.185 (12)0.205 (12)0.053 (10)0.115 (9)0.029 (11)
O13A0.127 (10)0.128 (10)0.227 (12)−0.046 (8)0.076 (9)0.015 (9)
O14A0.164 (13)0.270 (17)0.116 (10)−0.105 (13)−0.059 (10)0.006 (11)
O210.113 (7)0.134 (7)0.084 (5)0.029 (6)−0.019 (5)0.004 (5)
O220.132 (7)0.053 (4)0.210 (11)−0.012 (4)0.000 (7)0.003 (5)
O230.129 (7)0.125 (7)0.073 (4)0.017 (5)0.001 (4)−0.024 (4)
O240.098 (5)0.107 (6)0.175 (8)−0.004 (4)0.052 (5)0.021 (5)
O21A0.072 (9)0.133 (12)0.122 (14)0.042 (9)−0.021 (9)−0.038 (11)
O22A0.128 (11)0.127 (11)0.140 (10)0.051 (9)0.042 (8)−0.022 (9)
O23A0.200 (16)0.091 (12)0.168 (16)−0.026 (11)0.037 (12)0.051 (11)
O24A0.111 (11)0.092 (8)0.167 (13)−0.025 (8)−0.019 (9)−0.045 (9)
N10.058 (2)0.0481 (19)0.067 (2)0.0039 (16)0.0069 (17)−0.0052 (16)
N20.075 (2)0.071 (2)0.063 (2)0.005 (2)−0.0003 (19)−0.0083 (19)
N0.051 (2)0.057 (2)0.097 (3)0.0004 (17)0.020 (2)−0.001 (2)
N1A0.051 (2)0.0505 (18)0.0553 (19)0.0033 (16)0.0048 (15)−0.0013 (15)
C10.084 (4)0.069 (3)0.088 (3)0.026 (3)−0.015 (3)−0.013 (3)
C20.092 (4)0.077 (4)0.100 (4)0.029 (3)−0.009 (3)0.001 (3)
C30.082 (4)0.053 (3)0.136 (5)0.014 (3)0.027 (4)0.001 (3)
C40.072 (3)0.055 (3)0.099 (4)0.000 (2)0.023 (3)−0.019 (3)
C50.054 (2)0.051 (2)0.072 (3)−0.0076 (19)0.016 (2)−0.010 (2)
C60.115 (4)0.071 (3)0.077 (3)0.012 (3)0.001 (3)−0.020 (3)
C1A0.061 (3)0.070 (3)0.069 (3)0.014 (2)0.002 (2)−0.001 (2)
C2A0.076 (3)0.086 (4)0.080 (3)0.032 (3)−0.001 (3)−0.004 (3)
C3A0.120 (5)0.061 (3)0.085 (4)0.029 (3)−0.004 (3)−0.001 (3)
C4A0.100 (4)0.054 (3)0.066 (3)0.002 (3)0.000 (3)0.005 (2)
C5A0.074 (3)0.053 (2)0.047 (2)0.001 (2)−0.001 (2)−0.0026 (18)
C6A0.069 (3)0.068 (3)0.073 (3)−0.013 (2)0.017 (2)0.001 (2)
N1B0.065 (2)0.054 (2)0.056 (2)0.0133 (18)0.0019 (17)−0.0060 (16)
C1B0.082 (4)0.100 (4)0.060 (3)0.047 (3)0.008 (3)0.001 (3)
C11B0.087 (4)0.142 (6)0.095 (4)0.010 (4)0.037 (3)0.025 (4)
C2B0.125 (6)0.174 (8)0.061 (4)0.084 (6)0.012 (4)−0.008 (4)
C3B0.157 (8)0.168 (8)0.093 (5)0.090 (7)−0.029 (5)−0.067 (6)
C4B0.114 (5)0.085 (4)0.125 (5)0.029 (4)−0.048 (4)−0.044 (4)
C5B0.077 (3)0.054 (3)0.076 (3)0.020 (2)−0.021 (3)−0.010 (2)
C6B0.066 (3)0.079 (4)0.113 (4)−0.016 (3)−0.019 (3)0.022 (3)

Geometric parameters (Å, °)

Cu—N11.993 (3)C3—C41.367 (7)
Cu—N21.998 (3)C3—H3A0.9300
Cu—N1A2.027 (3)C4—C51.378 (6)
Cu—N1B2.039 (3)C4—H4A0.9300
Cu—N2.195 (3)C5—C61.496 (7)
Cl1—O141.301 (9)C6—H6A0.9700
Cl1—O11A1.321 (10)C6—H6B0.9700
Cl1—O14A1.362 (10)C1A—C2A1.374 (6)
Cl1—O111.381 (7)C1A—H1AA0.9300
Cl1—O13A1.391 (9)C2A—C3A1.364 (8)
Cl1—O121.396 (7)C2A—H2AA0.9300
Cl1—O12A1.414 (11)C3A—C4A1.370 (7)
Cl1—O131.430 (7)C3A—H3AA0.9300
Cl2—O24A1.315 (11)C4A—C5A1.394 (6)
Cl2—O22A1.380 (10)C4A—H4AA0.9300
Cl2—O221.381 (7)C5A—C6A1.499 (6)
Cl2—O211.383 (8)C6A—H6AA0.9700
Cl2—O23A1.396 (12)C6A—H6AB0.9700
Cl2—O231.417 (6)N1B—C5B1.332 (6)
Cl2—O241.448 (6)N1B—C1B1.356 (6)
Cl2—O21A1.461 (13)C1B—C2B1.371 (8)
N1—C51.337 (5)C1B—C11B1.495 (8)
N1—C11.337 (6)C11B—H11A0.9600
N2—C61.440 (6)C11B—H11B0.9600
N2—H2B0.9000C11B—H11C0.9600
N2—H2C0.9000C2B—C3B1.380 (11)
N—C6A1.456 (6)C2B—H2BA0.9300
N—C6B1.462 (6)C3B—C4B1.347 (11)
N—H0A0.9100C3B—H3BA0.9300
N1A—C5A1.336 (5)C4B—C5B1.386 (7)
N1A—C1A1.346 (5)C4B—H4BA0.9300
C1—C21.369 (7)C5B—C6B1.499 (7)
C1—H1A0.9300C6B—H6BA0.9700
C2—C31.361 (7)C6B—H6BB0.9700
C2—H2A0.9300
N1—Cu—N282.37 (15)C3—C4—C5118.9 (5)
N1—Cu—N1A175.43 (13)C3—C4—H4A120.5
N2—Cu—N1A93.06 (14)C5—C4—H4A120.5
N1—Cu—N1B96.05 (14)N1—C5—C4121.8 (4)
N2—Cu—N1B161.97 (16)N1—C5—C6116.0 (4)
N1A—Cu—N1B88.33 (13)C4—C5—C6122.3 (4)
N1—Cu—N101.74 (14)N2—C6—C5112.0 (4)
N2—Cu—N115.93 (16)N2—C6—H6A109.2
N1A—Cu—N80.11 (13)C5—C6—H6A109.2
N1B—Cu—N82.03 (15)N2—C6—H6B109.2
O11A—Cl1—O14A116.7 (11)C5—C6—H6B109.2
O14—Cl1—O11120.5 (8)H6A—C6—H6B107.9
O11A—Cl1—O13A116.5 (10)N1A—C1A—C2A122.2 (5)
O14A—Cl1—O13A109.2 (9)N1A—C1A—H1AA118.9
O14—Cl1—O12114.6 (8)C2A—C1A—H1AA118.9
O11—Cl1—O12103.5 (5)C3A—C2A—C1A118.9 (5)
O11A—Cl1—O12A109.8 (10)C3A—C2A—H2AA120.6
O14A—Cl1—O12A100.6 (10)C1A—C2A—H2AA120.6
O13A—Cl1—O12A101.9 (9)C2A—C3A—C4A119.9 (5)
O12—Cl1—O12A111.9 (9)C2A—C3A—H3AA120.1
O14—Cl1—O13104.2 (7)C4A—C3A—H3AA120.1
O11—Cl1—O13107.2 (7)C3A—C4A—C5A118.9 (5)
O12—Cl1—O13105.9 (7)C3A—C4A—H4AA120.6
O24A—Cl2—O22A116.2 (10)C5A—C4A—H4AA120.6
O24A—Cl2—O21111.1 (12)N1A—C5A—C4A121.2 (4)
O22—Cl2—O21114.2 (7)N1A—C5A—C6A116.7 (4)
O24A—Cl2—O23A113.6 (11)C4A—C5A—C6A122.0 (4)
O22A—Cl2—O23A109.3 (9)N—C6A—C5A111.5 (4)
O22—Cl2—O23112.7 (6)N—C6A—H6AA109.3
O21—Cl2—O23110.6 (7)C5A—C6A—H6AA109.3
O22—Cl2—O24105.0 (5)N—C6A—H6AB109.3
O21—Cl2—O24108.2 (7)C5A—C6A—H6AB109.3
O23—Cl2—O24105.5 (5)H6AA—C6A—H6AB108.0
O24A—Cl2—O21A109.3 (12)C5B—N1B—C1B120.6 (4)
O22A—Cl2—O21A104.7 (11)C5B—N1B—Cu115.1 (3)
O23A—Cl2—O21A102.4 (12)C1B—N1B—Cu123.7 (3)
C5—N1—C1118.4 (4)N1B—C1B—C2B119.9 (6)
C5—N1—Cu115.2 (3)N1B—C1B—C11B117.3 (4)
C1—N1—Cu126.1 (3)C2B—C1B—C11B122.8 (6)
C6—N2—Cu112.6 (3)C1B—C11B—H11A109.5
C6—N2—H2B109.1C1B—C11B—H11B109.5
Cu—N2—H2B109.1H11A—C11B—H11B109.5
C6—N2—H2C109.1C1B—C11B—H11C109.5
Cu—N2—H2C109.1H11A—C11B—H11C109.5
H2B—N2—H2C107.8H11B—C11B—H11C109.5
C6A—N—C6B114.4 (4)C1B—C2B—C3B119.6 (7)
C6A—N—Cu105.1 (3)C1B—C2B—H2BA120.2
C6B—N—Cu106.8 (3)C3B—C2B—H2BA120.2
C6A—N—H0A110.1C4B—C3B—C2B119.5 (7)
C6B—N—H0A110.1C4B—C3B—H3BA120.3
Cu—N—H0A110.1C2B—C3B—H3BA120.3
C5A—N1A—C1A118.9 (4)C3B—C4B—C5B119.9 (7)
C5A—N1A—Cu115.6 (3)C3B—C4B—H4BA120.0
C1A—N1A—Cu125.3 (3)C5B—C4B—H4BA120.0
N1—C1—C2122.3 (5)N1B—C5B—C4B120.2 (6)
N1—C1—H1A118.9N1B—C5B—C6B117.8 (4)
C2—C1—H1A118.9C4B—C5B—C6B121.9 (6)
C3—C2—C1119.0 (5)N—C6B—C5B114.9 (4)
C3—C2—H2A120.5N—C6B—H6BA108.5
C1—C2—H2A120.5C5B—C6B—H6BA108.5
C2—C3—C4119.6 (5)N—C6B—H6BB108.5
C2—C3—H3A120.2C5B—C6B—H6BB108.5
C4—C3—H3A120.2H6BA—C6B—H6BB107.5
N2—Cu—N1—C59.1 (3)C5A—N1A—C1A—C2A−0.4 (6)
N1A—Cu—N1—C57.6 (19)Cu—N1A—C1A—C2A174.5 (3)
N1B—Cu—N1—C5171.0 (3)N1A—C1A—C2A—C3A0.1 (7)
N—Cu—N1—C5−105.9 (3)C1A—C2A—C3A—C4A−0.4 (8)
N2—Cu—N1—C1−177.1 (4)C2A—C3A—C4A—C5A0.9 (7)
N1A—Cu—N1—C1−179 (36)C1A—N1A—C5A—C4A1.0 (6)
N1B—Cu—N1—C1−15.1 (4)Cu—N1A—C5A—C4A−174.4 (3)
N—Cu—N1—C167.9 (4)C1A—N1A—C5A—C6A−177.6 (4)
N1—Cu—N2—C6−12.6 (4)Cu—N1A—C5A—C6A7.0 (4)
N1A—Cu—N2—C6167.3 (4)C3A—C4A—C5A—N1A−1.2 (7)
N1B—Cu—N2—C6−98.7 (6)C3A—C4A—C5A—C6A177.3 (4)
N—Cu—N2—C686.8 (4)C6B—N—C6A—C5A−81.9 (5)
N1—Cu—N—C6A150.8 (3)Cu—N—C6A—C5A34.9 (4)
N2—Cu—N—C6A63.7 (3)N1A—C5A—C6A—N−30.2 (5)
N1A—Cu—N—C6A−24.9 (3)C4A—C5A—C6A—N151.2 (4)
N1B—Cu—N—C6A−114.6 (3)N1—Cu—N1B—C5B105.0 (3)
N1—Cu—N—C6B−87.2 (3)N2—Cu—N1B—C5B−171.0 (4)
N2—Cu—N—C6B−174.4 (3)N1A—Cu—N1B—C5B−76.3 (3)
N1A—Cu—N—C6B97.0 (3)N—Cu—N1B—C5B4.0 (3)
N1B—Cu—N—C6B7.3 (3)N1—Cu—N1B—C1B−84.0 (4)
N1—Cu—N1A—C5A−103.9 (17)N2—Cu—N1B—C1B0.0 (7)
N2—Cu—N1A—C5A−105.4 (3)N1A—Cu—N1B—C1B94.7 (3)
N1B—Cu—N1A—C5A92.6 (3)N—Cu—N1B—C1B174.9 (4)
N—Cu—N1A—C5A10.4 (3)C5B—N1B—C1B—C2B−0.4 (7)
N1—Cu—N1A—C1A81.0 (18)Cu—N1B—C1B—C2B−170.9 (4)
N2—Cu—N1A—C1A79.6 (3)C5B—N1B—C1B—C11B−178.6 (4)
N1B—Cu—N1A—C1A−82.4 (3)Cu—N1B—C1B—C11B10.9 (6)
N—Cu—N1A—C1A−164.6 (3)N1B—C1B—C2B—C3B3.4 (9)
C5—N1—C1—C2−1.5 (8)C11B—C1B—C2B—C3B−178.5 (6)
Cu—N1—C1—C2−175.2 (4)C1B—C2B—C3B—C4B−2.7 (11)
N1—C1—C2—C31.2 (9)C2B—C3B—C4B—C5B−0.9 (11)
C1—C2—C3—C4−0.8 (9)C1B—N1B—C5B—C4B−3.2 (6)
C2—C3—C4—C50.6 (8)Cu—N1B—C5B—C4B168.1 (4)
C1—N1—C5—C41.4 (6)C1B—N1B—C5B—C6B173.7 (4)
Cu—N1—C5—C4175.7 (3)Cu—N1B—C5B—C6B−15.0 (5)
C1—N1—C5—C6−178.1 (5)C3B—C4B—C5B—N1B3.9 (8)
Cu—N1—C5—C6−3.7 (5)C3B—C4B—C5B—C6B−172.9 (6)
C3—C4—C5—N1−0.9 (7)C6A—N—C6B—C5B99.2 (5)
C3—C4—C5—C6178.5 (5)Cu—N—C6B—C5B−16.7 (5)
Cu—N2—C6—C513.8 (6)N1B—C5B—C6B—N22.1 (6)
N1—C5—C6—N2−6.8 (7)C4B—C5B—C6B—N−161.0 (4)
C4—C5—C6—N2173.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2B···O12A0.902.213.080 (17)161
N2—H2B···O130.902.273.103 (12)154
N2—H2C···O240.902.223.064 (9)157
N2—H2C···O22A0.902.273.158 (19)169
N2—H2C···O210.902.643.374 (17)139
N—H0A···O12i0.912.443.301 (10)158
N—H0A···O11Ai0.912.403.291 (19)165
C3—H3A···O23ii0.932.543.456 (10)169
C4—H4A···O12iii0.932.453.374 (10)172
C1A—H1AA···O14A0.932.573.438 (18)156
C2A—H2AA···O22iv0.932.563.475 (13)167
C2A—H2AA···O22Aiv0.932.463.199 (14)136
C6A—H6AB···O22v0.972.353.294 (10)164
C11B—H11B···O14A0.962.323.180 (12)148
C6B—H6BA···O22v0.972.533.433 (10)154
C6B—H6BA···O23Av0.972.473.433 (17)172
C6B—H6BB···O23vi0.972.543.375 (10)144

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y+1, −z; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z; (v) −x+2, −y+2, −z; (vi) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2224).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Bruker (1997). XSCANS Version 2.20. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2000). SHELXTL Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cho, J., Furutachi, H., Fujinami, S., Tosha, T., Ohtsu, H., Ikeda, O., Suzuki, A., Nomura, M., Uruga, T., Tanida, H., Kawai, T., Tanaka, K., Kitagawa, T. & Suzuki, M. (2006). Inorg. Chem.45, 2873–2885. [PubMed]
  • Gultneh, Y., Yisgedu, T. B., Tesema, Y. T. & Butcher, R. J. (2003). Inorg. Chem.42, 1857–1867. [PubMed]
  • Hetterscheid, D. G. H., Smits, J. M. M. & Bruin, B. (2004). Organometallics, 23, 4236–4246.
  • Mizuno, M., Hayashi, H., Fujinami, S., Furutachi, H., Nagatomo, S., Otakes, S., Uozumi, K., Suzuki, M. & Kitagawa, T. (2003). Inorg. Chem.42, 8534–8544. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ohtsu, H., Itoh, S., Nagamtomo, S., Kitagawa, T., Ogo, S., Watanabe, Y. & Fukuzumi, S. (2001). Inorg. Chem.40, 3200–3207. [PubMed]
  • Oki, A. R., Glerup, J. & Hodgson, D. J. (1990). Inorg. Chem.29, 2435–2441.
  • Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
  • Sheldrick, G. M. (1997). SHELXL97 University of Göttingen, Germany. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography