PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2008 January 1; 64(Pt 1): m71.
Published online 2007 December 6. doi:  10.1107/S160053680706299X
PMCID: PMC2914951

Chlorido(1,10-phenanthroline)(1H-1,2,4-triazole-3-carboxyl­ato)copper(II)

Abstract

The title complex, [Cu(C3H2N3O2)Cl(C12H8N2)], crystallizes with two independent mol­ecules in the asymmetric unit. Each CuII atom is coordinated by an N atom and an O atom from the bidentate 1H-1,2,4-triazole-3-carboxyl­ate ligand, two N atoms from the 1,10-phenanthroline ligand, and the Cl atom. The coordination geometry is based on a ClN3O square pyramid. In the crystal structure, the mol­ecules are linked by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For related literature, see: Guo & Wang (2005 [triangle]); Zhao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-64-00m71-scheme1.jpg

Experimental

Crystal data

  • [Cu(C3H2N3O2)Cl(C12H8N2)]
  • M r = 391.27
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-64-00m71-efi1.jpg
  • a = 12.7302 (16) Å
  • b = 17.562 (3) Å
  • c = 14.299 (2) Å
  • β = 113.836 (2)°
  • V = 2924.2 (7) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.70 mm−1
  • T = 298 (2) K
  • 0.53 × 0.49 × 0.47 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.467, T max = 0.503 (expected range = 0.418–0.451)
  • 14193 measured reflections
  • 5142 independent reflections
  • 3277 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.096
  • S = 1.04
  • 5142 reflections
  • 433 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a [triangle]); molecular graphics: SHELXTL (Sheldrick, 1997b [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680706299X/tk2217sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680706299X/tk2217Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the National Natural Science Foundation of China (grant No. 20761002). This research was sponsored by the Fund of the Talent Highland Research Programme of Guangxi University (grant No. 205121), the Science Foundation of the State Ethnic Affairs Commission (grant No. 07GX05), the Development Foundation of Guangxi Research Institute of Chemical Industry and the Science Foundation of Guangxi University for Nationalities (grant Nos. 0409032, 0409012 and 0509ZD047).

supplementary crystallographic information

Comment

In connection with on-going studies in coordination chemistry (Zhao et al., 2008) and the biological importance of triazole molecules (Guo & Wang, 2005), the crystal structure of a new ternary Cu(II) complex with 1H-1,2,4-triazole-3-carboxylate (TRIA), 1,10-phenanthroline (phen) and Cl is described.

Two independent mononuclear complex molecules, Cu(TRIA)(phen)Cl, comprise the asymmetric unit of (I), Fig. 1. Each Cu atom is chelated by a N atom and a O atom, derived from the TRIA anion, two N atoms from the chelating phen ligand, and the penta-coordinated coordination geometry is completed by a Cl atom. The latter atom occupies an axial position in the approximately square-pyramidal N3OCl coordination geometry; the angles around the Cu(II) atom range from 81.66 (12) to 166.88 (12)°.

The primary intermolecular contacts in the crystal structure are of the type N—H···O and involve both amines and both of the non-coordinating carbonyls of the TRIA anions (Table 1).

Experimental

CuCl2.2H2O (0.5 mmol, 85.2 mg) dissolved in distilled water (15 ml) was added with stirring at 323 K to 1H-1,2,4-triazole-3-carboxylic acid (1 mmol, 113 mg) also dissolved in distilled water (5 ml). The resulting blue solution was allowed to react for 30 min and 1,10-phenanthroline (0.5 mmol, 99.1 mg) dissolved in ethanol (5 ml) was added. Dark-blue crystals suitable for X-ray analysis were obtained by slow evaporation over a period of one month (yield 85%). Analysis. Found: C 46.08, H 2.52, Cl 9.00, Cu 16.29, N 17.83, O 8.23%. C15H10ClCuN5O2 requires: C 46.04, H 2.58, Cl 9.06, Cu 16.24, N 17.90, O 8.18%.

Refinement

The C– and N-bound H atoms were placed in calculated positions and included in the refinement in the riding-model approximation with N—H = 0.86 Å and C—H = 0.93 Å, and with Uiso(H) 1.2Ueq(C,N).

Figures

Fig. 1.
The molecular structures of the two independent molecules in (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. The H atoms are omitted for clarity.

Crystal data

[Cu(C3H2N3O2)Cl(C12H8N2)]F000 = 1576
Mr = 391.27Dx = 1.777 Mg m3
Monoclinic, P21/cMo Kα radiation λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4070 reflections
a = 12.7302 (16) Åθ = 2.8–26.9º
b = 17.562 (3) ŵ = 1.70 mm1
c = 14.299 (2) ÅT = 298 (2) K
β = 113.836 (2)ºPrism, dark-blue
V = 2924.2 (7) Å30.53 × 0.49 × 0.47 mm
Z = 8

Data collection

Siemens SMART CCD area-detector diffractometer5142 independent reflections
Radiation source: fine-focus sealed tube3277 reflections with I > 2σ(I)
Monochromator: graphiteRint = 0.038
T = 298(2) Kθmax = 25.0º
[var phi] and ω scansθmin = 1.8º
Absorption correction: multi-scan(SADABS; Sheldrick, 1996)h = −9→15
Tmin = 0.467, Tmax = 0.503k = −20→20
14193 measured reflectionsl = −17→16

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.096  w = 1/[σ2(Fo2) + (0.0357P)2 + 2.079P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
5142 reflectionsΔρmax = 0.33 e Å3
433 parametersΔρmin = −0.41 e Å3
2 restraintsExtinction correction: none
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.40914 (4)0.59579 (2)0.14980 (4)0.03021 (14)
Cu20.09358 (4)0.44546 (2)0.35025 (4)0.03027 (14)
Cl10.47137 (8)0.60210 (6)0.33526 (8)0.0430 (3)
Cl20.02771 (8)0.43345 (6)0.16237 (8)0.0435 (3)
N10.1523 (3)0.75001 (18)0.0769 (2)0.0363 (8)
N20.0815 (3)0.69152 (17)0.0746 (2)0.0344 (8)
H20.01090.69650.06570.041*
N30.2440 (2)0.63748 (17)0.1008 (2)0.0289 (7)
N40.3832 (2)0.48281 (16)0.1427 (2)0.0273 (7)
N50.5511 (2)0.56362 (16)0.1292 (2)0.0259 (7)
N60.3479 (3)0.29065 (17)0.4200 (2)0.0342 (8)
N70.4151 (3)0.34806 (17)0.4121 (2)0.0336 (8)
H70.48430.34240.41710.040*
N80.2549 (2)0.40305 (16)0.3910 (2)0.0290 (7)
N90.1178 (2)0.55924 (16)0.3493 (2)0.0287 (7)
N10−0.0475 (2)0.47917 (17)0.3696 (2)0.0278 (7)
O10.4428 (2)0.70196 (14)0.1296 (2)0.0413 (7)
O20.3680 (2)0.81737 (15)0.0851 (2)0.0466 (8)
O30.0617 (2)0.34048 (14)0.3793 (2)0.0399 (7)
O40.1371 (2)0.22583 (14)0.4277 (2)0.0392 (7)
C10.3611 (3)0.7493 (2)0.1033 (3)0.0322 (9)
C20.2492 (3)0.7149 (2)0.0931 (3)0.0290 (9)
C30.1364 (3)0.6260 (2)0.0879 (3)0.0329 (9)
H30.10410.57860.08820.039*
C40.2961 (3)0.4431 (2)0.1466 (3)0.0375 (10)
H40.23420.46940.14970.045*
C50.2937 (4)0.3643 (2)0.1461 (3)0.0473 (12)
H50.23070.33890.14850.057*
C60.3838 (4)0.3233 (2)0.1422 (3)0.0436 (11)
H60.38300.27040.14290.052*
C70.4772 (3)0.3632 (2)0.1371 (3)0.0341 (10)
C80.4721 (3)0.4430 (2)0.1373 (3)0.0256 (9)
C90.5629 (3)0.4865 (2)0.1295 (3)0.0251 (8)
C100.6570 (3)0.4505 (2)0.1219 (3)0.0309 (9)
C110.7427 (3)0.4971 (2)0.1136 (3)0.0365 (10)
H110.80740.47580.10900.044*
C120.7291 (3)0.5749 (2)0.1124 (3)0.0353 (10)
H120.78440.60660.10610.042*
C130.6325 (3)0.6063 (2)0.1207 (3)0.0319 (9)
H130.62500.65900.12010.038*
C140.5729 (4)0.3277 (2)0.1292 (3)0.0427 (11)
H140.57650.27480.12880.051*
C150.6596 (3)0.3685 (2)0.1222 (3)0.0422 (11)
H150.72160.34340.11760.051*
C160.1432 (3)0.2929 (2)0.4052 (3)0.0295 (9)
C170.2519 (3)0.3259 (2)0.4067 (3)0.0292 (9)
C180.3601 (3)0.4141 (2)0.3956 (3)0.0319 (9)
H180.39040.46080.38830.038*
C190.2018 (3)0.5979 (2)0.3396 (3)0.0366 (10)
H190.26580.57150.34120.044*
C200.1980 (4)0.6772 (2)0.3269 (3)0.0417 (11)
H200.25840.70250.31970.050*
C210.1050 (3)0.7171 (2)0.3251 (3)0.0408 (11)
H210.10120.76960.31590.049*
C220.0151 (3)0.6776 (2)0.3375 (3)0.0326 (9)
C230.0260 (3)0.5985 (2)0.3494 (3)0.0268 (9)
C24−0.0622 (3)0.5555 (2)0.3619 (3)0.0247 (8)
C25−0.1584 (3)0.5917 (2)0.3659 (3)0.0317 (9)
C26−0.2413 (3)0.5454 (2)0.3793 (3)0.0367 (10)
H26−0.30670.56710.38190.044*
C27−0.2255 (3)0.4686 (2)0.3884 (3)0.0378 (10)
H27−0.27930.43760.39840.045*
C28−0.1272 (3)0.4369 (2)0.3826 (3)0.0330 (9)
H28−0.11740.38440.38800.040*
C29−0.0847 (4)0.7134 (2)0.3396 (3)0.0428 (11)
H29−0.09310.76590.33100.051*
C30−0.1669 (3)0.6726 (2)0.3536 (3)0.0409 (10)
H30−0.23050.69760.35540.049*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0245 (3)0.0246 (3)0.0455 (3)0.0001 (2)0.0183 (2)−0.0029 (2)
Cu20.0238 (3)0.0244 (3)0.0463 (3)0.0038 (2)0.0181 (2)0.0024 (2)
Cl10.0310 (6)0.0590 (7)0.0408 (5)−0.0006 (5)0.0164 (5)−0.0093 (5)
Cl20.0323 (6)0.0566 (7)0.0420 (5)0.0026 (5)0.0154 (5)−0.0063 (5)
N10.0269 (18)0.0319 (18)0.054 (2)0.0027 (15)0.0201 (17)0.0032 (16)
N20.0201 (17)0.038 (2)0.047 (2)−0.0001 (15)0.0148 (16)−0.0030 (16)
N30.0234 (17)0.0262 (17)0.0378 (18)−0.0006 (14)0.0130 (15)−0.0029 (15)
N40.0262 (18)0.0264 (17)0.0327 (18)−0.0003 (14)0.0154 (15)−0.0008 (14)
N50.0227 (17)0.0260 (17)0.0309 (17)0.0020 (14)0.0128 (14)0.0000 (14)
N60.0255 (18)0.0291 (18)0.050 (2)0.0013 (15)0.0180 (16)0.0002 (16)
N70.0213 (17)0.0344 (19)0.048 (2)0.0020 (14)0.0167 (16)−0.0018 (15)
N80.0211 (17)0.0271 (18)0.0391 (19)0.0017 (13)0.0124 (15)−0.0017 (14)
N90.0251 (18)0.0280 (18)0.0356 (19)0.0035 (14)0.0152 (15)−0.0011 (14)
N100.0218 (17)0.0322 (18)0.0319 (18)0.0043 (14)0.0135 (15)0.0030 (15)
O10.0275 (15)0.0283 (15)0.073 (2)0.0034 (12)0.0251 (15)0.0005 (14)
O20.0346 (16)0.0296 (16)0.085 (2)0.0021 (13)0.0337 (16)0.0087 (15)
O30.0246 (15)0.0268 (15)0.073 (2)0.0052 (12)0.0245 (14)0.0081 (14)
O40.0314 (15)0.0267 (15)0.0655 (19)0.0031 (12)0.0259 (15)0.0054 (14)
C10.030 (2)0.027 (2)0.045 (2)−0.0003 (19)0.021 (2)−0.0012 (19)
C20.025 (2)0.028 (2)0.038 (2)0.0031 (17)0.0168 (18)0.0014 (18)
C30.026 (2)0.030 (2)0.042 (2)−0.0045 (18)0.0141 (19)−0.0057 (18)
C40.034 (2)0.034 (2)0.052 (3)−0.0056 (19)0.024 (2)−0.007 (2)
C50.046 (3)0.037 (2)0.070 (3)−0.018 (2)0.034 (2)−0.005 (2)
C60.051 (3)0.026 (2)0.061 (3)−0.012 (2)0.031 (2)−0.004 (2)
C70.035 (2)0.028 (2)0.040 (2)−0.0036 (18)0.015 (2)−0.0022 (18)
C80.025 (2)0.025 (2)0.028 (2)−0.0019 (16)0.0112 (17)−0.0008 (16)
C90.0227 (19)0.028 (2)0.0230 (19)−0.0008 (16)0.0073 (16)−0.0019 (16)
C100.026 (2)0.037 (2)0.029 (2)0.0059 (17)0.0110 (18)−0.0001 (17)
C110.023 (2)0.048 (3)0.039 (2)0.0042 (19)0.0131 (19)0.002 (2)
C120.029 (2)0.038 (2)0.041 (2)−0.0078 (19)0.017 (2)0.0002 (19)
C130.030 (2)0.028 (2)0.038 (2)−0.0020 (17)0.0146 (19)0.0009 (18)
C140.046 (3)0.023 (2)0.060 (3)0.006 (2)0.023 (2)0.001 (2)
C150.035 (2)0.037 (2)0.056 (3)0.014 (2)0.019 (2)0.001 (2)
C160.025 (2)0.028 (2)0.037 (2)0.0012 (18)0.0139 (18)0.0003 (18)
C170.025 (2)0.030 (2)0.033 (2)0.0050 (18)0.0125 (18)−0.0008 (18)
C180.028 (2)0.029 (2)0.039 (2)0.0000 (18)0.0139 (19)0.0014 (18)
C190.027 (2)0.042 (3)0.047 (3)0.0003 (19)0.022 (2)−0.001 (2)
C200.041 (3)0.034 (2)0.055 (3)−0.009 (2)0.025 (2)−0.004 (2)
C210.041 (3)0.032 (2)0.048 (3)−0.004 (2)0.017 (2)0.0029 (19)
C220.034 (2)0.026 (2)0.033 (2)0.0037 (18)0.0091 (19)−0.0034 (17)
C230.027 (2)0.029 (2)0.024 (2)0.0034 (17)0.0104 (17)−0.0016 (16)
C240.0201 (19)0.028 (2)0.025 (2)0.0048 (16)0.0073 (17)0.0003 (16)
C250.029 (2)0.037 (2)0.030 (2)0.0057 (18)0.0124 (18)−0.0016 (18)
C260.023 (2)0.052 (3)0.039 (2)0.0104 (19)0.0153 (19)−0.003 (2)
C270.028 (2)0.048 (3)0.042 (2)−0.003 (2)0.020 (2)−0.001 (2)
C280.031 (2)0.032 (2)0.036 (2)0.0001 (18)0.0142 (19)0.0017 (18)
C290.046 (3)0.028 (2)0.056 (3)0.013 (2)0.022 (2)−0.001 (2)
C300.036 (2)0.036 (2)0.056 (3)0.011 (2)0.023 (2)−0.003 (2)

Geometric parameters (Å, °)

Cu1—O11.960 (3)C5—H50.9300
Cu1—N42.007 (3)C6—C71.407 (5)
Cu1—N52.026 (3)C6—H60.9300
Cu1—N32.063 (3)C7—C81.404 (5)
Cu1—Cl12.4443 (12)C7—C141.414 (5)
Cu2—O31.968 (3)C8—C91.427 (5)
Cu2—N102.014 (3)C9—C101.396 (5)
Cu2—N92.023 (3)C10—C111.407 (5)
Cu2—N82.036 (3)C10—C151.440 (5)
Cu2—Cl22.4788 (12)C11—C121.376 (5)
N1—C21.313 (4)C11—H110.9300
N1—N21.359 (4)C12—C131.396 (5)
N2—C31.320 (5)C12—H120.9300
N2—H20.8600C13—H130.9300
N3—C31.321 (5)C14—C151.353 (6)
N3—C21.368 (4)C14—H140.9300
N4—C41.330 (5)C15—H150.9300
N4—C81.359 (4)C16—C171.493 (5)
N5—C131.323 (5)C18—H180.9300
N5—C91.363 (4)C19—C201.403 (5)
N6—C171.313 (4)C19—H190.9300
N6—N71.357 (4)C20—C211.367 (5)
N7—C181.326 (4)C20—H200.9300
N7—H70.8600C21—C221.410 (5)
N8—C181.328 (5)C21—H210.9300
N8—C171.376 (4)C22—C231.401 (5)
N9—C191.320 (5)C22—C291.428 (5)
N9—C231.357 (4)C23—C241.422 (5)
N10—C281.329 (5)C24—C251.402 (5)
N10—C241.352 (4)C25—C261.405 (5)
O1—C11.265 (4)C25—C301.431 (5)
O2—C11.233 (4)C26—C271.362 (5)
O3—C161.265 (4)C26—H260.9300
O4—C161.232 (4)C27—C281.402 (5)
C1—C21.499 (5)C27—H270.9300
C3—H30.9300C28—H280.9300
C4—C51.385 (5)C29—C301.349 (6)
C4—H40.9300C29—H290.9300
C5—C61.374 (6)C30—H300.9300
O1—Cu1—N4166.89 (12)N4—C8—C7123.7 (3)
O1—Cu1—N589.02 (11)N4—C8—C9116.7 (3)
N4—Cu1—N581.67 (12)C7—C8—C9119.7 (3)
O1—Cu1—N382.28 (11)N5—C9—C10123.1 (3)
N4—Cu1—N3102.10 (12)N5—C9—C8116.1 (3)
N5—Cu1—N3153.69 (12)C10—C9—C8120.8 (3)
O1—Cu1—Cl197.04 (9)C9—C10—C11117.5 (4)
N4—Cu1—Cl194.25 (9)C9—C10—C15118.1 (3)
N5—Cu1—Cl1104.68 (9)C11—C10—C15124.3 (4)
N3—Cu1—Cl1101.02 (9)C12—C11—C10118.7 (4)
O3—Cu2—N1088.58 (11)C12—C11—H11120.6
O3—Cu2—N9166.41 (12)C10—C11—H11120.6
N10—Cu2—N981.80 (12)C11—C12—C13120.1 (4)
O3—Cu2—N882.37 (11)C11—C12—H12119.9
N10—Cu2—N8157.06 (12)C13—C12—H12119.9
N9—Cu2—N8102.95 (12)N5—C13—C12122.2 (4)
O3—Cu2—Cl298.08 (9)N5—C13—H13118.9
N10—Cu2—Cl2104.13 (9)C12—C13—H13118.9
N9—Cu2—Cl293.58 (9)C15—C14—C7121.8 (4)
N8—Cu2—Cl298.01 (9)C15—C14—H14119.1
C2—N1—N2102.5 (3)C7—C14—H14119.1
C3—N2—N1110.4 (3)C14—C15—C10120.8 (4)
C3—N2—H2124.8C14—C15—H15119.6
N1—N2—H2124.8C10—C15—H15119.6
C3—N3—C2102.9 (3)O4—C16—O3125.3 (3)
C3—N3—Cu1148.2 (3)O4—C16—C17121.5 (3)
C2—N3—Cu1107.7 (2)O3—C16—C17113.2 (3)
C4—N4—C8117.4 (3)N6—C17—N8113.8 (3)
C4—N4—Cu1129.7 (3)N6—C17—C16128.4 (3)
C8—N4—Cu1112.8 (2)N8—C17—C16117.8 (3)
C13—N5—C9118.3 (3)N7—C18—N8109.3 (3)
C13—N5—Cu1129.2 (3)N7—C18—H18125.4
C9—N5—Cu1112.3 (2)N8—C18—H18125.4
C17—N6—N7102.6 (3)N9—C19—C20122.5 (4)
C18—N7—N6111.1 (3)N9—C19—H19118.8
C18—N7—H7124.5C20—C19—H19118.8
N6—N7—H7124.5C21—C20—C19119.7 (4)
C18—N8—C17103.3 (3)C21—C20—H20120.1
C18—N8—Cu2147.2 (3)C19—C20—H20120.1
C17—N8—Cu2108.4 (2)C20—C21—C22119.1 (4)
C19—N9—C23118.3 (3)C20—C21—H21120.5
C19—N9—Cu2129.9 (3)C22—C21—H21120.5
C23—N9—Cu2111.6 (2)C23—C22—C21117.2 (4)
C28—N10—C24118.5 (3)C23—C22—C29118.7 (4)
C28—N10—Cu2129.0 (3)C21—C22—C29124.0 (4)
C24—N10—Cu2112.4 (2)N9—C23—C22123.2 (3)
C1—O1—Cu1117.9 (2)N9—C23—C24117.1 (3)
C16—O3—Cu2117.8 (2)C22—C23—C24119.8 (3)
O2—C1—O1125.4 (4)N10—C24—C25122.7 (3)
O2—C1—C2121.1 (3)N10—C24—C23116.5 (3)
O1—C1—C2113.4 (3)C25—C24—C23120.8 (3)
N1—C2—N3114.1 (3)C24—C25—C26117.4 (4)
N1—C2—C1128.0 (3)C24—C25—C30118.0 (4)
N3—C2—C1118.0 (3)C26—C25—C30124.6 (4)
N2—C3—N3110.2 (3)C27—C26—C25119.8 (4)
N2—C3—H3124.9C27—C26—H26120.1
N3—C3—H3124.9C25—C26—H26120.1
N4—C4—C5122.7 (4)C26—C27—C28119.2 (4)
N4—C4—H4118.6C26—C27—H27120.4
C5—C4—H4118.6C28—C27—H27120.4
C6—C5—C4120.4 (4)N10—C28—C27122.5 (4)
C6—C5—H5119.8N10—C28—H28118.8
C4—C5—H5119.8C27—C28—H28118.8
C5—C6—C7118.6 (4)C30—C29—C22121.3 (4)
C5—C6—H6120.7C30—C29—H29119.4
C7—C6—H6120.7C22—C29—H29119.4
C8—C7—C6117.1 (4)C29—C30—C25121.4 (4)
C8—C7—C14118.9 (3)C29—C30—H30119.3
C6—C7—C14124.0 (4)C25—C30—H30119.3
C2—N1—N2—C3−0.7 (4)C4—N4—C8—C9177.8 (3)
O1—Cu1—N3—C3−169.9 (5)Cu1—N4—C8—C9−4.7 (4)
N4—Cu1—N3—C322.6 (5)C6—C7—C8—N40.4 (6)
N5—Cu1—N3—C3118.3 (5)C14—C7—C8—N4178.8 (4)
Cl1—Cu1—N3—C3−74.2 (5)C6—C7—C8—C9−178.4 (4)
O1—Cu1—N3—C2−7.0 (2)C14—C7—C8—C90.1 (5)
N4—Cu1—N3—C2−174.4 (2)C13—N5—C9—C100.4 (5)
N5—Cu1—N3—C2−78.7 (3)Cu1—N5—C9—C10−176.7 (3)
Cl1—Cu1—N3—C288.8 (2)C13—N5—C9—C8−179.1 (3)
O1—Cu1—N4—C4−132.5 (5)Cu1—N5—C9—C83.9 (4)
N5—Cu1—N4—C4−177.7 (3)N4—C8—C9—N50.5 (5)
N3—Cu1—N4—C4−24.2 (4)C7—C8—C9—N5179.3 (3)
Cl1—Cu1—N4—C478.1 (3)N4—C8—C9—C10−179.0 (3)
O1—Cu1—N4—C850.4 (6)C7—C8—C9—C10−0.2 (5)
N5—Cu1—N4—C85.2 (2)N5—C9—C10—C110.0 (5)
N3—Cu1—N4—C8158.7 (2)C8—C9—C10—C11179.5 (3)
Cl1—Cu1—N4—C8−99.0 (2)N5—C9—C10—C15−179.5 (3)
O1—Cu1—N5—C137.7 (3)C8—C9—C10—C150.0 (5)
N4—Cu1—N5—C13178.4 (3)C9—C10—C11—C12−0.6 (5)
N3—Cu1—N5—C1378.0 (4)C15—C10—C11—C12178.9 (3)
Cl1—Cu1—N5—C13−89.3 (3)C10—C11—C12—C130.8 (6)
O1—Cu1—N5—C9−175.7 (2)C9—N5—C13—C12−0.2 (5)
N4—Cu1—N5—C9−4.9 (2)Cu1—N5—C13—C12176.3 (3)
N3—Cu1—N5—C9−105.4 (3)C11—C12—C13—N5−0.4 (6)
Cl1—Cu1—N5—C987.3 (2)C8—C7—C14—C150.2 (6)
C17—N6—N7—C180.5 (4)C6—C7—C14—C15178.5 (4)
O3—Cu2—N8—C18169.9 (5)C7—C14—C15—C10−0.4 (6)
N10—Cu2—N8—C18−122.5 (5)C9—C10—C15—C140.3 (6)
N9—Cu2—N8—C18−22.8 (5)C11—C10—C15—C14−179.2 (4)
Cl2—Cu2—N8—C1872.8 (5)Cu2—O3—C16—O4178.5 (3)
O3—Cu2—N8—C175.3 (2)Cu2—O3—C16—C17−1.4 (4)
N10—Cu2—N8—C1772.9 (4)N7—N6—C17—N8−0.2 (4)
N9—Cu2—N8—C17172.6 (2)N7—N6—C17—C16178.9 (4)
Cl2—Cu2—N8—C17−91.8 (2)C18—N8—C17—N6−0.1 (4)
O3—Cu2—N9—C19134.2 (5)Cu2—N8—C17—N6171.4 (3)
N10—Cu2—N9—C19179.6 (3)C18—N8—C17—C16−179.3 (3)
N8—Cu2—N9—C1922.4 (4)Cu2—N8—C17—C16−7.8 (4)
Cl2—Cu2—N9—C19−76.6 (3)O4—C16—C17—N67.6 (6)
O3—Cu2—N9—C23−52.5 (6)O3—C16—C17—N6−172.5 (4)
N10—Cu2—N9—C23−7.1 (2)O4—C16—C17—N8−173.4 (3)
N8—Cu2—N9—C23−164.3 (2)O3—C16—C17—N86.5 (5)
Cl2—Cu2—N9—C2396.6 (2)N6—N7—C18—N8−0.6 (4)
O3—Cu2—N10—C28−7.4 (3)C17—N8—C18—N70.4 (4)
N9—Cu2—N10—C28−177.8 (3)Cu2—N8—C18—N7−164.6 (4)
N8—Cu2—N10—C28−73.9 (5)C23—N9—C19—C20−1.6 (6)
Cl2—Cu2—N10—C2890.6 (3)Cu2—N9—C19—C20171.3 (3)
O3—Cu2—N10—C24176.6 (2)N9—C19—C20—C210.5 (6)
N9—Cu2—N10—C246.3 (2)C19—C20—C21—C220.8 (6)
N8—Cu2—N10—C24110.2 (3)C20—C21—C22—C23−1.0 (6)
Cl2—Cu2—N10—C24−85.4 (2)C20—C21—C22—C29178.4 (4)
N4—Cu1—O1—C1114.0 (5)C19—N9—C23—C221.4 (5)
N5—Cu1—O1—C1158.6 (3)Cu2—N9—C23—C22−172.7 (3)
N3—Cu1—O1—C13.5 (3)C19—N9—C23—C24−178.9 (3)
Cl1—Cu1—O1—C1−96.7 (3)Cu2—N9—C23—C247.0 (4)
N10—Cu2—O3—C16−161.1 (3)C21—C22—C23—N9−0.1 (5)
N9—Cu2—O3—C16−116.3 (5)C29—C22—C23—N9−179.5 (3)
N8—Cu2—O3—C16−2.2 (3)C21—C22—C23—C24−179.8 (3)
Cl2—Cu2—O3—C1694.9 (3)C29—C22—C23—C240.7 (5)
Cu1—O1—C1—O2−178.0 (3)C28—N10—C24—C25−0.8 (5)
Cu1—O1—C1—C20.8 (4)Cu2—N10—C24—C25175.7 (3)
N2—N1—C2—N30.3 (4)C28—N10—C24—C23179.2 (3)
N2—N1—C2—C1180.0 (4)Cu2—N10—C24—C23−4.4 (4)
C3—N3—C2—N10.2 (4)N9—C23—C24—N10−1.8 (5)
Cu1—N3—C2—N1−170.7 (3)C22—C23—C24—N10177.9 (3)
C3—N3—C2—C1−179.5 (3)N9—C23—C24—C25178.2 (3)
Cu1—N3—C2—C19.6 (4)C22—C23—C24—C25−2.1 (5)
O2—C1—C2—N1−8.4 (6)N10—C24—C25—C260.5 (5)
O1—C1—C2—N1172.8 (4)C23—C24—C25—C26−179.4 (3)
O2—C1—C2—N3171.3 (4)N10—C24—C25—C30−178.0 (3)
O1—C1—C2—N3−7.5 (5)C23—C24—C25—C302.0 (5)
N1—N2—C3—N30.9 (4)C24—C25—C26—C270.4 (6)
C2—N3—C3—N2−0.6 (4)C30—C25—C26—C27178.8 (4)
Cu1—N3—C3—N2162.7 (4)C25—C26—C27—C28−1.1 (6)
C8—N4—C4—C50.6 (6)C24—N10—C28—C270.1 (6)
Cu1—N4—C4—C5−176.4 (3)Cu2—N10—C28—C27−175.7 (3)
N4—C4—C5—C60.4 (6)C26—C27—C28—N100.8 (6)
C4—C5—C6—C7−1.0 (6)C23—C22—C29—C300.7 (6)
C5—C6—C7—C80.6 (6)C21—C22—C29—C30−178.7 (4)
C5—C6—C7—C14−177.7 (4)C22—C29—C30—C25−0.8 (6)
C4—N4—C8—C7−1.0 (5)C24—C25—C30—C29−0.6 (6)
Cu1—N4—C8—C7176.5 (3)C26—C25—C30—C29−179.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O4i0.861.992.835 (4)166
N7—H7···O2ii0.861.942.797 (4)172

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2217).

References

  • Guo, X.-H. & Wang, Q.-X. (2005). Acta Cryst. E61, o3217–o3218.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97 University of Göttingen, Germany.
  • Sheldrick, G. M. (1997b). SHELXTL Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Zhao, K., Yin, X.-H., Yu, F., Zhu, J. & Lin, C.-W. (2008). Acta Cryst. E64 In the press.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography